YW @jm_mightypirate

PolL

Physics of Life ®

o0
TU Dresden

Convolutional neuronal networks

Johannes Soltwedel

With Material from
Robert Haase, PolL
Alex Krull, MPI CBG
Martin Weigert, EPFL Lausanne
Uwe Schmidt, MPI CBG
lgnacio Arganda-Carreras, Universidad del Pais Vasco

CENTER FOR
SYSTEMS BIOLOGY
DRESDEN

Convolutional neural networks

Inputs
)

- b
Xl
W,

W

Weights

Bias

Activation
function

-

> Y

Linear

Non-linear

For image data, the values x,, x,,... would be

Pixel coordinates

Pixel intensities

Filter kernel
entries

YW @jm_mightypirate

Output

PolL

Single neuron output calculation
Yy =wiXx; +Wyx, +wixs +b=wlx+b

/

Goal: Change w; sothaty =y

Physics of Life o o
TU Dresden e

Gound truth

Prediction

Activation functions

Sigmoid

o(z) = —%

1+e—=

tanh
tanh(z)

ReLU
max (0, x)

| |
% 5| 5
= |
s - ° -
sl) -
© ° °

Leaky RelLU
max(0.1z, x)

Maxout
max(wlz + by, wdz + by)

ELU

{

T x>0
ae®—1) <0

10

10
n_yu

-2

Convolutional neural networks PolL

Physics of Life o —~4

TU Dresden
* Layers
Convolutional layer Fully connected layer Pooling layer
Previously: Now: (“Max pool”, “Average pool”) Pooling maximal values
Defined filter kernels Undefined filter kernels
1/16 | 1/8 | 1/16 Wy | Wy, | W3
1/8 | 1/4 | 1/8 » Wy, | Wy, | Woyg » Averaging values
1/16 | 1/8 | 1/16 Wi | W3y | Wag

YW @jm_mightypirate

Learning: Back propagation

e Learning is an optimization problem

e Step O: Initialize the network randomly
* Weights
* Bias

e Step 1: Forward pass the input through the network,
get an initial prediction (Images 0...M)

e Step 2: Compare the output with the ground truth,
computer the error (loss function)

* The loss function can be freely defined.
* Mean squared error:

1 M
— ¥ (i — ¥i)?

Lo =52
l:

Step 3: Update weights

YW @jm_mightypirate

Prediction y;

PolL

Physics of Life o 4
TU Dresden e

/)

Weights w

Biases b

'
A a

Slide adapted from: Mahmood Nazari, TU Dresde

Ground
truth y;

Back-Propagation Algorithm PoL

Physics of Life ¢ 4
TU Dresden e

The loss function can be expanded from

Ly, y) = i _Zl(yi — Vi)
i=

as the prediction depends on inputs x weights w
and bias b

1 M
L@ x,w) = _Zl(yi — W'x; + b))?
1=

We can calculate derivatives with respect to w and
b to find their optimal values

— Derivatives tell us how to change w & b in order
to improve the prediction

L

L Ground
Prediction y ' truth §
A a

YW @jm_mightypirate 5
Slide adapted from : Mahmood Nazari, TU Dresden

Repeat this n times, each time update weights w

Image segmentation PoL

Physics of Life o 4
TU Dresden e

Encoder Decoder
— —

Where Where

crop and copy

4
m crop and copy ‘IH
4 t

L4 crop and copy 1
[What t
) S B
® 3x3 convolution, RelLu activation 4 2x2 up conv.
¥ 2x2 max pool ®» 1x1 conv.

* The U-net is the most used network architecture in biological image processing using CNNs.
* Encoder: Increase the “What”, decrease the “Where”
 Decoder: Increase the “Where”, decrease the “What”

YW @jm_mightypirate
Ronneberger et al. (2015): U-Net: Convolutional Networks for Biomedical Image Segmentation

Object detection: YOLO & classification PolL

Physics of Life o . [
TU Dresden e

pm—

YOLO: You only |

TR . T
=

ook once https://github.com/ultralytics/yolov5
: ' ’ : > Annotations:

s | x |y | w | b

0.09 048 0.09 0.22
0.22 053 0.2 0.27
056 049 0.21 0.30
0.68 049 0.09 0.12
0.9 0.57 0.17 0.23

N =2 2 O O

Currently supported:
=L - Obje
- Mask segmentation

- Easy to train (only bounding boxes necessary)
- Currently restricted to 2D -2 still interesting for object detection, e.g. in smart microscopy
- Speed: < 10ms/frame (Yolo v5x) = Almost real-time for some cameras

YW @jm_mightypirate

https://github.com/ultralytics/yolov5

Image denoising: CARE) PolL

Physics of Life
TU Dresden

* CARE: content-aware restoration

* Image acquisition of pairs of images: A high-quality and a low-quality image.

* Problem: Shot noise, Biology moves!

* Trained model only applicable to image data of the same conditions (biological system, microscope, etc)

5 example validation patches
top row: input (source), middle row: target (ground truth), bottom row: predicted from source

@jm_mightypirate o .
vy https://csbdeep.bioimagecomputing.com/

https://csbdeep.bioimagecomputing.com/

Image denoising: Noise2Void PoL

Physics of Life o ~o ®

TU Dresden
“Self-supervised training assumes that the noise is pixel-wise independent and that the true intensity of
a pixel can be predicted from local image context” Raw data = signal + noise
e | 5 ' Raw data
? Blind spot

aining preview (V) (800
41/256 (41), 64x64 pixels (64x64); 32-bit; 4MB

|

_F.FL] s

~Strategy:
- Try to predict intensity of pixel y from surrounding pixels x
- CNN fails to predict noise component = N2V can only
reproduce signal from the surroundings of y
- Only random/uncorrelated noise can be removed, otherwise
artifacts occur

>l I : https://github.com/juglab/n2v

W @jm_mightypirate https://forum.image.sc/t/n2v-artefacts-in-training-data/70686

https://github.com/juglab/n2v
https://forum.image.sc/t/n2v-artefacts-in-training-data/70686

Stardist: Nucleus segmentation PoL

Physics of Life
TU Dresden

Noisy images + Crowded cells = Common source of segmentation errors

Dense Segmentation
(e.g. U-Net)

Bounding box based methods
(e.g. Mask-RCNN)

W @jm_mightypirate Schmid et al., MICCAI (2018), https://github.com/stardist/stardist

https://github.com/stardist/stardist

Stardist: Nucleus segmentation) PolL

Physics of Life

. s . i TU Dresden
Object probabilities Radial Distances

Strategy: di,;j

- Add additional information to prediction

- Member pixels of objects (nuclei) can be reached
via a straight line from the center

® M

Dense Polygon Prediction Polygon Selection
(e.g. U-Net, ResNet) (Non-Maximum Suppression NMS)

R,
W @jm_mightypirate Schmid et al., MICCAI (2018), https://github.com/stardist/stardist

https://github.com/stardist/stardist

Stardist: Nucleus segmentation PoL

Physics of Life oS
TU Dresden

Object probabilities Radial Distances

Problem:

d) . .
o QAR - Multiple candidate points for nucleus center
SN — Overlapping instance predictions

Before NMS After NMS

Non-maximum-suppression (NMS):
—Intersection over Union (loU) threshold
T determines ,conservativeness”:
High t: Objects tend to be considered as
separate objects
Low T: Objects tend to be considered as

the same objects
3 @jm_mightypirate Schmid et al., MICCAI (2018), https://github.com/stardist/stardist

https://github.com/stardist/stardist

Stardist: Nucleus segmentation

PolL

Physics of Life .. —~4
Object probabilities Radial Distances

d;i.j : e vall’s
‘W/[\
" 7

— Select polygon with highest object probability inside:Q

- Look at other polygons: Is the overlap of
- Yes:

- No:

Non-maximum-suppression (NMS):

- Object probabilities: Probability that pixel
belongs to class “nucleus”

- Multiple maxima lead to multiple possible
polygons for the same nucleus

//n

1

Algorithm:

with Q larger than threshold t?
and Qare actually the same object, drop

and Q) are separate nuclei

- Setting T very high leads to many false positives!
¥ @jm_mightypirate

Schmid et al., MICCAI (2018), https://github.com/stardist/stardist

https://github.com/stardist/stardist

Stardist: Nucleus segmentation PoL

Physics of Life
TU Dresden

Non-maximum suppression

W @jm_mightypirate Schmid et al., MICCAI (2018), https://github.com/stardist/stardist

https://github.com/stardist/stardist

Overfitting PoL

Physics of Life o 4/
TU Dresden e

Overfitting:

- Network is learning things ,by heart”

= Hint at this happening: Updated weights
from training fail to perform well in test

0.6

0.4

|
|
|
02 0.6 :
|
|
|
0 500 1000 1500 2000 1000 1500 2000 0.4 :
I
. 0.2
Strategies:
— Save two models: Last model and best model — may be susceptible to noise
- Early stopping: End training loop preemptively if validation loss does not e
increase by AL within n episodes 07
06
early_stop_callback = EarlyStopping(monitor="val_szccuracy", min_delta=0.03, patience=3, verbose=False,
mode="max")
trainer = Trainexr(callbacks=[early_stop_callback]) 0.5
https://lightning.ai/docs/pytorch/stable/common/early stopping.html
0.4
YW @jm_mightypirate

0 504 1,000 1,500 2,000

https://lightning.ai/docs/pytorch/stable/common/early_stopping.html

Receptive field PolL

Physics of Life ¢ .
TU Dresden e

Many prediction frameworks use UNets — similar weak points
—>Neurons in deeper layers can only “see” parts of the raw image

- 0bjects must be smaller than receptive field to be detectable/seen
Strategies:

/ Object to be segmented - Make network deeper (add more layers)
d = |ncreases receptive field ©

" Increases number of weights and hardware
requirements ®

- Resample input:
Think before: Which level of detail is actually

/ required to perform the task at hand?
Encoder

What » Where
YW @jm_mightypirate

\W‘}V\\

Unbalanced training data PoL

Physics of Life ¢ 4
TU Dresden e

Common case Heterogeneous occurrence of labels in training data

_ — Rare events will not be caught because they don’t harm
5000 - %% accuracy much: 0.006 -
: Example: Two classes to be predicted: Necrotic tissue
(0.1% of tissue area) & Vital tissue (99.9% of tissue area)
Simply predicting everything as vital leads to a high
accuracy!

n=
SMA
4.67e-03

3720

A
=
el

0.005 +

4000 -

Background
n

0.004 -
3000 A

0.003 ~

Label occurrence
Label weight

2000 -

- Problematic in detecting rare events:
Rare pixel classes, few patients in study with specific 0.002 -

1000 - mutation, rare disease

2.69e-04
2.21e-04
3.14e-04

Vital

ight

0.001 A

MNon-Vital

Background
ight

weight

—Can happen intentionally or unintentionally

0.000 -

[s the iPhone racist? Chinese users claim iPhoneX face Strategy: Weighted sampling

recognition can't tell them apart

APPLE has come under fire following numerous complaints from Chinese users who claim the iPhone X face 9 DU Il ng tra Ini ng’ ShOW rare sam ples more
recognition can't tell them apart. often to network than others

https://www.news.com.au/

- Still: More & better data > heavy weighting

YW @jm_mightypirate

https://www.news.com.au/

Batch averaging PoL

Physics of Life o 4
TU Dresden e

e During training and validation, images and labels are stacked into batches and processed in parallel:

Batch averaging
- Images in batches are z-scaled before forward pass through network:

batch — u(batch)

o(batch)
- Mean and standard deviation of batch:

,u(batch') =0 & o(batch’) =1

batch' =

Pitfalls:

- Different regions/timepoints in image data can have very different
intensity characteristics (bleaching, diffraction in depth, etc)

- Shuffle training data

num_workers

train_dataloader = Dataloader dataset=train_dataset, batch_size-batch_size, num_workers=num_workers, shuffle

test_dataloader - Dataloader(dataset-test_dataset, batch size-batch _size, num_workers-num_workers)
validation dataloader - Dataloader{dataset-validation dataset, batch size-batch size, num_workers-num workers)

- Careful during inference! Microscopes sometimes automatically black
Array dimensions: array.shape = [B, C, X, Y] out/avoid certain “uninteresting
regions — including these in the
batch-averaging will mess up the
YW @jm_mightypirate prediction!

Information leakage PoL

Physics of Life
TU Dresden

val size (8.1 {(MyDataset))
train_size (0.8 ((MyDataset) - wval size))
test size (MyDataset) - val size - train size

train_dataset, test dataset, validation dataset - torch. . . (MyDataset, [train size, test size, val size])

(train_dataset))
(test_dataset))
(validation dataset))

num_workers
train_dataloader - Dataloader(dataset-train_dataset, batch_size-batch _size, num workers-num workers, shuffle }

test _dataloader - Dataloader(dataset-test dataset, batch _size-batch size, num workers-num_workers)
validation_dataloader = Dataloader dataset-=validation_dataset, batch_size-batch_size, num_workers=num workers, shuffle

I11Re-executing this cell multiple times mixes
testing/training/validation data!!!

T —— — Bad practice, don’t do this at home

model.) — Better: separate notebook to create separate folders for
training/testing/validation data which is only executed once!

trainer. model, train dataloaders-train_dataloader, val dataloaders-validation dataloader

YW @jm_mightypirate

Example) PolL

Physics of Life o . [
TU Dresden e

Raw Ground truth Prediction

What happened here?

Receptive field too small

0 100 200 300 0 100 200 300 0 50 100 150 200 250 300 350

Upscaled x2 Upscaled x2

50

100

150

200

250

300

350

0 100 200 300 100 150 200 250 300 350

¥y @jm_mightypirate

Takeaways

* With great power comes great responsibility: Validate your models well!

* Better data > better model

* Make model publicly available? = Bio image model zoo: https://bioimage.io/

Al models for
bioimage analysis

AN

® 2op @
k |] Upload for
sharing
Dataset
Model training 3

ﬁ;fHEl

T) Acquisition & task
" gescription, help

Jupyter notebook
< =0)

(? Training & task
\~/ description. help

Applications
<[> =

7y Interaction with
=~/ biowmage io content

YW @jm_mightypirate

Search and explore
the model collection

“¥Biolmage.l0

v
v

Model card

==

Trained model for microtubule reconstruction

1 Download < Share DOl License
. . &8 Dataset
P’ Test run the model </> Notebook

Output

' T\) Documentation, trainin,

(L) gata, help... /' Tests passed

Download
=5 models

Al-powered bioimage analysis

User-friendly
software

“ llastik

; DeeplmageJ
|]|-‘ ZeroCostDL4Mic

StarDist

@ New partners

Applications
e Segmentation
o Cliassification
e Artificial labeling
e Denoising

e Super-resolution

Developer tools

el '
jupyter ‘_{‘) O
- <=

PolL

Physics of Life ¢ 4/
TU Dresden e

https://bioimage.io/

	Folie 1: Convolutional neuronal networks
	Folie 2: Convolutional neural networks
	Folie 3: Convolutional neural networks
	Folie 4: Learning: Back propagation
	Folie 5: Back-Propagation Algorithm
	Folie 6: Image segmentation
	Folie 7: Object detection: YOLO & classification
	Folie 8: Image denoising: CARE
	Folie 9: Image denoising: Noise2Void
	Folie 10: Stardist: Nucleus segmentation
	Folie 11: Stardist: Nucleus segmentation
	Folie 12: Stardist: Nucleus segmentation
	Folie 13: Stardist: Nucleus segmentation
	Folie 14: Stardist: Nucleus segmentation
	Folie 15: Overfitting
	Folie 16: Receptive field
	Folie 17: Unbalanced training data
	Folie 18: Batch averaging
	Folie 19: Information leakage
	Folie 20: Example
	Folie 21: Takeaways

