
@jm_mightypirate

Convolutional neuronal networks

Johannes Soltwedel

With Material from

Robert Haase, PoL

Alex Krull, MPI CBG

Martin Weigert, EPFL Lausanne

Uwe Schmidt, MPI CBG

Ignacio Arganda-Carreras, Universidad del Pais Vasco

@jm_mightypirate

Convolutional neural networks

x1

x2

x3

Σ f y

Output

Activation
function

Bias

b

Weights

In
p

u
ts

Single neuron output calculation
𝑦 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏 = 𝑤𝑇𝑥 + 𝑏

Goal: Change 𝑤𝑖 so that 𝑦 = ො𝑦

Linear Non-linear

For image data, the values x1, x2,… would be

Pixel intensities Pixel coordinates

Filter kernel
entries

Prediction
Gound truth

w1

w2

w3

Activation functions

@jm_mightypirate

Convolutional neural networks

• Layers

x1

x2

x3

x4

Convolutional layer Fully connected layer Pooling layer
(“Max pool”, “Average pool”)

1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16

Previously:
Defined filter kernels

w11 w12 w13

w21 w22 w23

w31 w32 w33

Now:
Undefined filter kernels

3 15 1 13

9 7 0 10

11 5 5 3

1 8 9 6

15 13

11 9

Pooling maximal values

8.5 6.0

6.3 5.8

Averaging values

@jm_mightypirate

Learning: Back propagation

• Learning is an optimization problem

• Step 0: Initialize the network randomly

• Weights

• Bias

• Step 1: Forward pass the input through the network,
get an initial prediction (Images 0…M)

• Step 2: Compare the output with the ground truth,
computer the error (loss function)

• The loss function can be freely defined.

• Mean squared error:

• Step 3: Update weights

Slide adapted from: Mahmood Nazari, TU Dresden

Input xi

Prediction 𝑦𝑖
Ground
truth ෝ𝑦𝑖

ℒ(𝑦, ො𝑦) =
1

𝑀
∑
𝑖=1

𝑀

(ො𝑦𝑖 − 𝑦𝑖)
2

ℒ

Weights w

Biases b

@jm_mightypirate

Back-Propagation Algorithm

The loss function can be expanded from

as the prediction depends on inputs x weights w
and bias b

We can calculate derivatives with respect to 𝑤 and
b to find their optimal values

→ Derivatives tell us how to change 𝑤 & 𝑏 in order
to improve the prediction

Repeat this n times, each time update weights w

5

Slide adapted from : Mahmood Nazari, TU Dresden

Input x

Prediction 𝑦
Ground
truth ො𝑦ℒ

ℒ(𝑦, ො𝑦) =
1

𝑀
∑
𝑖=1

𝑀

(ො𝑦𝑖 − 𝑦𝑖)
2

ℒ(ො𝑦, 𝑥, 𝑤) =
1

𝑀
∑
𝑖=1

𝑀

(ො𝑦𝑖 − (𝑤𝑇𝑥𝑖 + 𝑏))2

Weights w

Biases b

@jm_mightypirate

Image segmentation

• The U-net is the most used network architecture in biological image processing using CNNs.

• Encoder: Increase the “What”, decrease the “Where”

• Decoder: Increase the “Where”, decrease the “What”

Encoder Decoder

Ronneberger et al. (2015): U-Net: Convolutional Networks for Biomedical Image Segmentation

Where

What

Where

@jm_mightypirate

Object detection: YOLO & classification
YOLO: You only look once https://github.com/ultralytics/yolov5

locomotive

locomotive

Car

Wagon

Wagon

Annotations:

Class x y w h

0 0.09 0.48 0.09 0.22

0 0.22 0.53 0.2 0.27

1 0.56 0.49 0.21 0.30

1 0.68 0.49 0.09 0.12

2 0.9 0.57 0.17 0.23

height

width

Currently supported:
- Object detection
- Mask segmentation
- Object tracking

- Easy to train (only bounding boxes necessary)
- Currently restricted to 2D → still interesting for object detection, e.g. in smart microscopy
- Speed: < 10ms/frame (Yolo v5x) → Almost real-time for some cameras

https://github.com/ultralytics/yolov5

@jm_mightypirate

Image denoising: CARE

• CARE: content-aware restoration

• Image acquisition of pairs of images: A high-quality and a low-quality image.

• Problem: Shot noise, Biology moves!

• Trained model only applicable to image data of the same conditions (biological system, microscope, etc)

https://csbdeep.bioimagecomputing.com/

https://csbdeep.bioimagecomputing.com/

@jm_mightypirate

Image denoising: Noise2Void

Raw data = signal + noise

?

Raw data

Strategy:
→ Try to predict intensity of pixel y from surrounding pixels x
→ CNN fails to predict noise component → N2V can only

reproduce signal from the surroundings of y
→ Only random/uncorrelated noise can be removed, otherwise

artifacts occur

https://github.com/juglab/n2v
https://forum.image.sc/t/n2v-artefacts-in-training-data/70686

“Self-supervised training assumes that the noise is pixel-wise independent and that the true intensity of
a pixel can be predicted from local image context”

Blind spot

CNN

Ground truth ො𝑦

Prediction 𝑦

ℒ Loss

https://github.com/juglab/n2v
https://forum.image.sc/t/n2v-artefacts-in-training-data/70686

@jm_mightypirate

Stardist: Nucleus segmentation

Noisy images + Crowded cells = Common source of segmentation errors

Dense Segmentation
(e.g. U-Net)

Bounding box based methods
(e.g. Mask-RCNN)

Schmid et al., MICCAI (2018), https://github.com/stardist/stardist

https://github.com/stardist/stardist

@jm_mightypirate

Dense Polygon Prediction
(e.g. U-Net, ResNet)

Polygon Selection
(Non-Maximum Suppression NMS)

Stardist: Nucleus segmentation

Strategy:
→Add additional information to prediction
→Member pixels of objects (nuclei) can be reached

via a straight line from the center

Schmid et al., MICCAI (2018), https://github.com/stardist/stardist

https://github.com/stardist/stardist

@jm_mightypirate

Stardist: Nucleus segmentation

xx
x
x

Problem:
→ Multiple candidate points for nucleus center
→ Overlapping instance predictions

Schmid et al., MICCAI (2018), https://github.com/stardist/stardist

Non-maximum-suppression (NMS):
→Intersection over Union (IoU) threshold

τ determines „conservativeness“:
High τ: Objects tend to be considered as
separate objects
Low τ: Objects tend to be considered as
the same objects

Before NMS After NMS

https://github.com/stardist/stardist

@jm_mightypirate

Stardist: Nucleus segmentation

xx
x
x

Non-maximum-suppression (NMS):
→Object probabilities: Probability that pixel

belongs to class “nucleus”
→Multiple maxima lead to multiple possible

polygons for the same nucleus

Algorithm:
→ Select polygon with highest object probability inside:
→ Look at other polygons: Is the overlap of with larger than threshold τ?

→Yes: and are actually the same object, drop
→No: and are separate nuclei

→ Setting τ very high leads to many false positives!

Schmid et al., MICCAI (2018), https://github.com/stardist/stardist

https://github.com/stardist/stardist

@jm_mightypirate

Stardist: Nucleus segmentation

Non-maximum suppression

Schmid et al., MICCAI (2018), https://github.com/stardist/stardist

https://github.com/stardist/stardist

@jm_mightypirate

Overfitting

Overfitting:

→ Network is learning things „by heart“
→ Hint at this happening: Updated weights

from training fail to perform well in test

Steps [#]

Tr
ai

n
in

g
lo

ss
 [

a.
u

.]

V
al

id
at

io
n

 lo
ss

 [
a.

u
.]

Steps [#]

Strategies:

→ Save two models: Last model and best model – may be susceptible to noise
→ Early stopping: End training loop preemptively if validation loss does not

increase by Δ𝐿 within n episodes

https://lightning.ai/docs/pytorch/stable/common/early_stopping.html

V
al

id
at

io
n

 lo
ss

 [
a.

u
.]

Tr
ai

n
in

g
lo

ss
 [

a.
u

.]

https://lightning.ai/docs/pytorch/stable/common/early_stopping.html

@jm_mightypirate

Receptive field

Many prediction frameworks use UNets – similar weak points

→Neurons in deeper layers can only “see” parts of the raw image

→Objects must be smaller than receptive field to be detectable/seen

Object to be segmented

Strategies:

- Make network deeper (add more layers)

▪ Increases receptive field ☺

▪ Increases number of weights and hardware
requirements

- Resample input:

Think before: Which level of detail is actually
required to perform the task at hand?

Encoder
What Where

@jm_mightypirate

Unbalanced training data

Common case Heterogeneous occurrence of labels in training data

https://www.news.com.au/

→ Rare events will not be caught because they don’t harm
accuracy much:

Example: Two classes to be predicted: Necrotic tissue
(0.1% of tissue area) & Vital tissue (99.9% of tissue area)
Simply predicting everything as vital leads to a high
accuracy!

→ Problematic in detecting rare events:
Rare pixel classes, few patients in study with specific
mutation, rare disease

→Can happen intentionally or unintentionally

Strategy: Weighted sampling

→ During training, show rare samples more
often to network than others

→ Still: More & better data > heavy weighting

https://www.news.com.au/

@jm_mightypirate

Batch averaging

• During training and validation, images and labels are stacked into batches and processed in parallel:

Array dimensions: array.shape = [B, C, X, Y]

B
atch

 axis

Channel axis

X Y

Batch averaging
- Images in batches are z-scaled before forward pass through network:

𝑏𝑎𝑡𝑐ℎ′ =
𝑏𝑎𝑡𝑐ℎ − 𝜇(𝑏𝑎𝑡𝑐ℎ)

𝜎(𝑏𝑎𝑡𝑐ℎ)
- Mean and standard deviation of batch:

𝜇 𝑏𝑎𝑡𝑐ℎ′ = 0 & 𝜎 𝑏𝑎𝑡𝑐ℎ′ = 1
Pitfalls:
- Different regions/timepoints in image data can have very different

intensity characteristics (bleaching, diffraction in depth, etc)
- Shuffle training data

- Careful during inference! Microscopes sometimes automatically black
out/avoid certain “uninteresting
regions – including these in the
batch-averaging will mess up the
prediction!

@jm_mightypirate

Information leakage

!!!Re-executing this cell multiple times mixes
testing/training/validation data!!!
→ Bad practice, don’t do this at home
→ Better: separate notebook to create separate folders for

training/testing/validation data which is only executed once!

@jm_mightypirate

Example

Prediction

What happened here?

Receptive field too small

I used a different resolution
than during training

Overfitting
?

@jm_mightypirate

Takeaways

• With great power comes great responsibility: Validate your models well!

• Better data > better model

• Make model publicly available? → Bio image model zoo: https://bioimage.io/

https://bioimage.io/

	Folie 1: Convolutional neuronal networks
	Folie 2: Convolutional neural networks
	Folie 3: Convolutional neural networks
	Folie 4: Learning: Back propagation
	Folie 5: Back-Propagation Algorithm
	Folie 6: Image segmentation
	Folie 7: Object detection: YOLO & classification
	Folie 8: Image denoising: CARE
	Folie 9: Image denoising: Noise2Void
	Folie 10: Stardist: Nucleus segmentation
	Folie 11: Stardist: Nucleus segmentation
	Folie 12: Stardist: Nucleus segmentation
	Folie 13: Stardist: Nucleus segmentation
	Folie 14: Stardist: Nucleus segmentation
	Folie 15: Overfitting
	Folie 16: Receptive field
	Folie 17: Unbalanced training data
	Folie 18: Batch averaging
	Folie 19: Information leakage
	Folie 20: Example
	Folie 21: Takeaways

