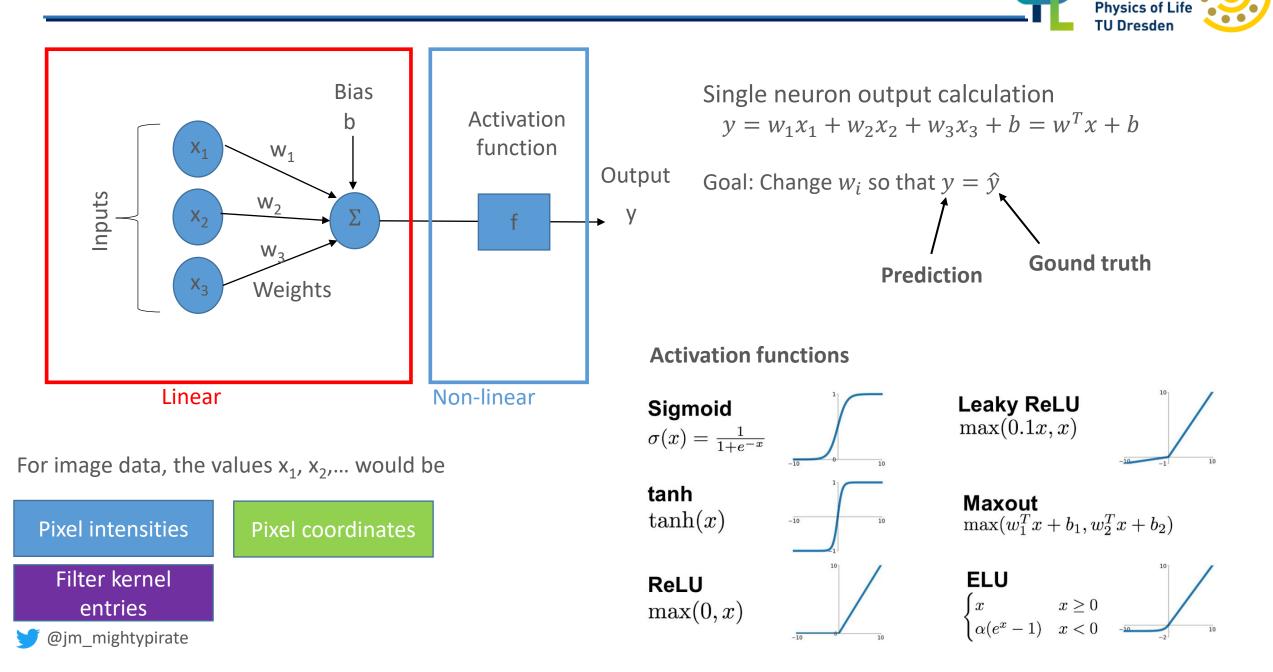


Convolutional neuronal networks

Johannes Soltwedel

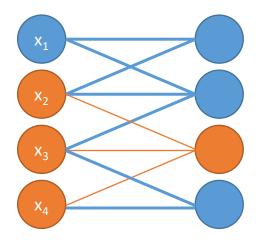
With Material from Robert Haase, PoL Alex Krull, MPI CBG Martin Weigert, EPFL Lausanne Uwe Schmidt, MPI CBG Ignacio Arganda-Carreras, Universidad del Pais Vasco

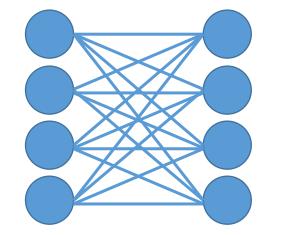
Convolutional neural networks

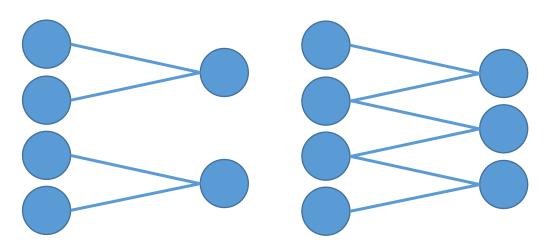


Convolutional neural networks

• Layers







Convolutional layer

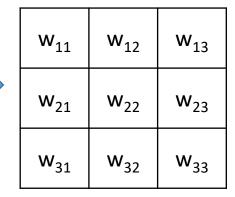
Fully connected layer

Previously: Defined filter kernels

1/16	1/8	1/16	
1/8	1/4	1/8	
1/16	1/8	1/16	

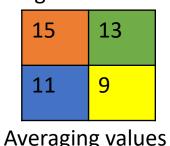
Now:

Undefined filter kernels



Pooling layer ("Max pool", "Average pool") Pooling maximal values

3	15	1	13	
9	7	0	10	
11	5	5	3	
1	8	9	6	



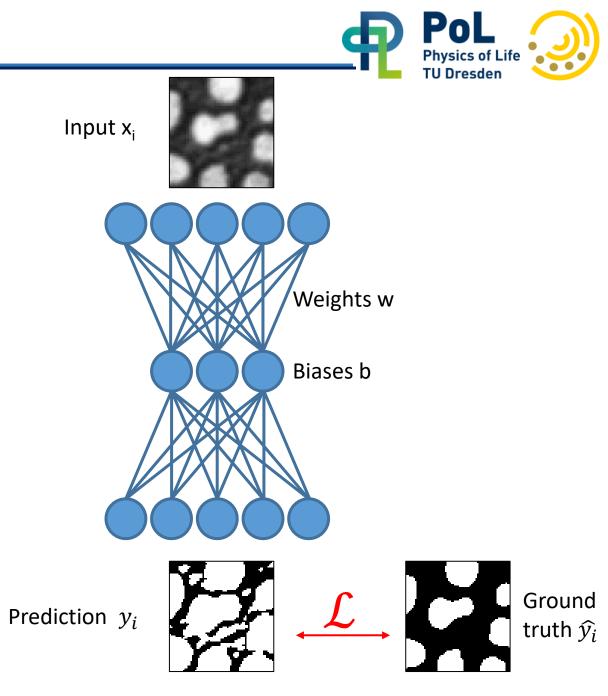
veraging value				
8.5	6.0			
6.3	5.8			

Learning: Back propagation

- Learning is an optimization problem
- Step 0: Initialize the network randomly
 - Weights
 - Bias
- Step 1: Forward pass the input through the network, get an initial prediction (Images 0...M)
- Step 2: Compare the output with the ground truth, computer the error (loss function)
 - The loss function can be freely defined.
 - Mean squared error:

$$\mathcal{L}(y, \hat{y}) = \frac{1}{M} \sum_{i=1}^{M} (\hat{y}_i - y_i)^2$$

• Step 3: Update weights



Slide adapted from: Mahmood Nazari, TU Dresde

Back-Propagation Algorithm

The loss function can be expanded from

 $\mathcal{L}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \frac{1}{M} \sum_{i=1}^{M} (\hat{y}_i - \boldsymbol{y}_i)^2$

as the prediction depends on inputs x weights w and bias b

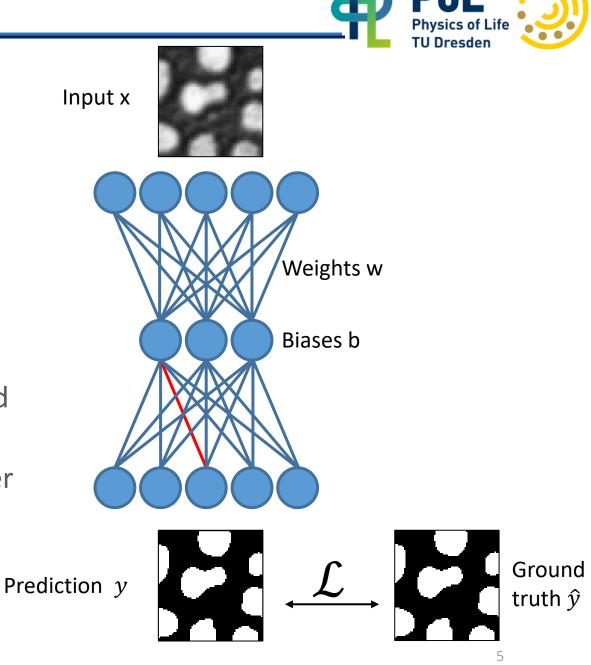
 $\mathcal{L}(\hat{y}, x, w) = \frac{1}{M} \sum_{i=1}^{M} (\hat{y}_i - (w^T x_i + b))^2$

We can calculate derivatives with respect to *w* and *b* to find their optimal values

→ Derivatives tell us how to change w & b in order to improve the prediction

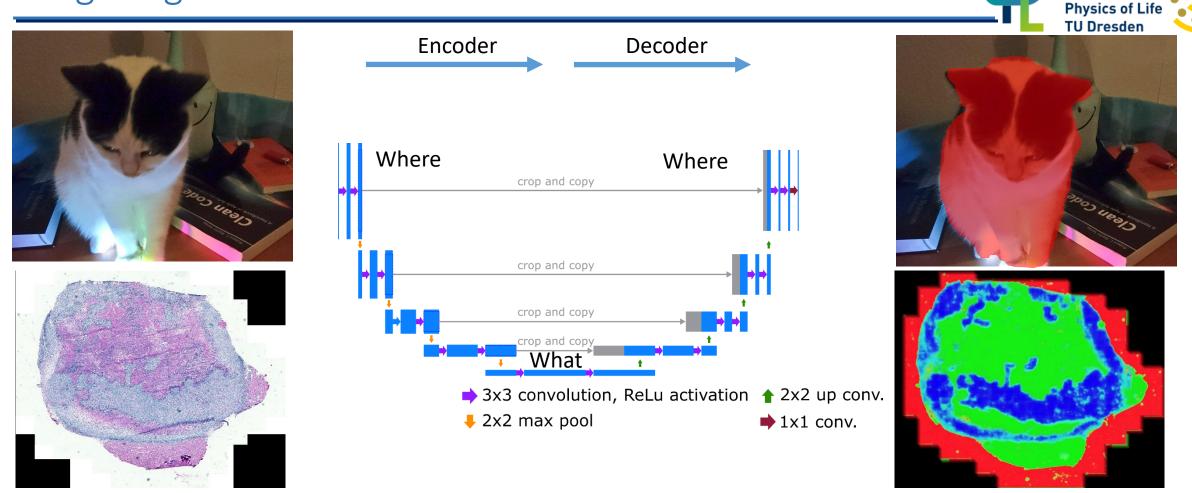
Repeat this n times, each time update weights w

@jm mightypirate



Slide adapted from : Mahmood Nazari, TU Dresden

Image segmentation

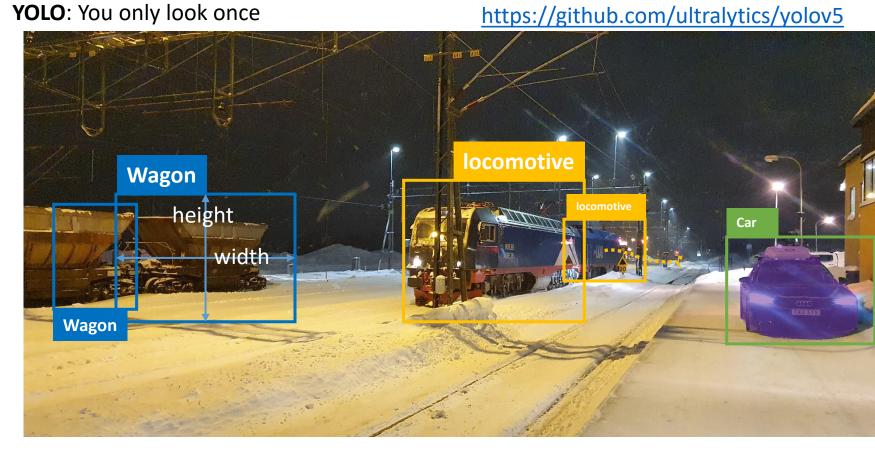


- The **U-net** is the most used network architecture in biological image processing using CNNs.
 - Encoder: Increase the "What", decrease the "Where"
 - Decoder: Increase the "Where", decrease the "What"

Ronneberger et al. (2015): U-Net: Convolutional Networks for Biomedical Image Segmentation

Po

Object detection: YOLO & classification



Annotations:

ALL DE LE DE	Class	x	У	w	h		
*	0	0.09	0.48	0.09	0.22		
A. M. A.	0	0.22	0.53	0.2	0.27		
	1	0.56	0.49	0.21	0.30		
	1	0.68	0.49	0.09	0.12		
200	2	0.9	0.57	0.17	0.23		

Currently supported:

- Object detection
- Mask segmentation
- Object tracking

- Easy to train (only bounding boxes necessary)
- Currently restricted to 2D \rightarrow still interesting for object detection, e.g. in smart microscopy
- Speed: < 10ms/frame (Yolo v5x) \rightarrow Almost real-time for some cameras

- CARE: content-aware restoration
- Image acquisition of pairs of images: A high-quality and a low-quality image.
- Problem: Shot noise, Biology moves!
- Trained model only applicable to image data of the same conditions (biological system, microscope, etc)

5 example validation patches top row: input (source), middle row: target (ground truth), bottom row: predicted from source

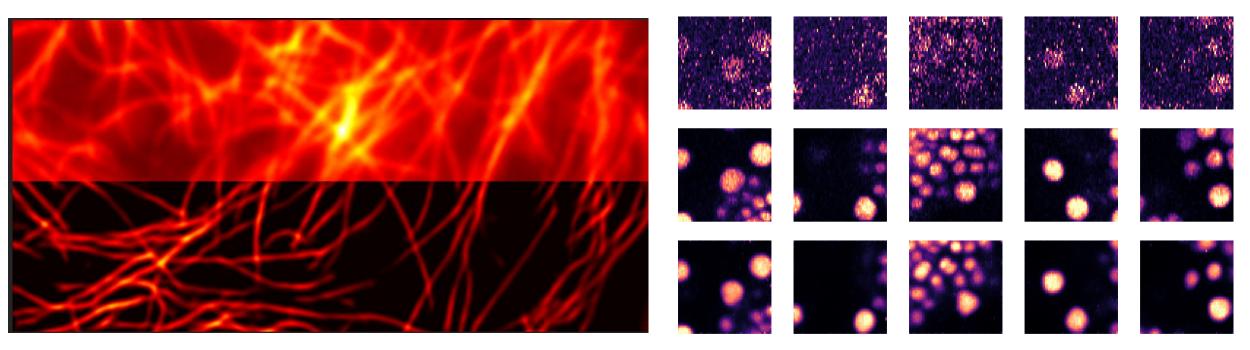
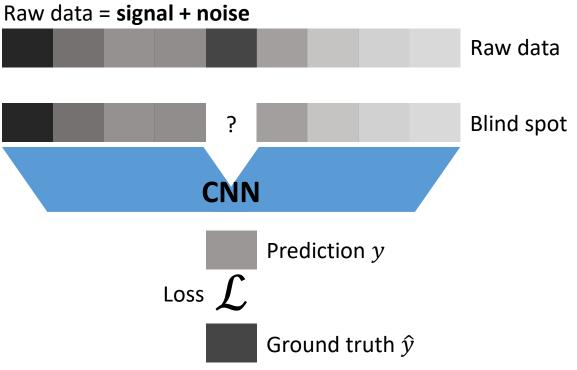


Image denoising: Noise2Void

"Self-supervised training assumes that the noise is pixel-wise independent and that the true intensity of a pixel can be predicted from local image context" Raw data = signal + noise



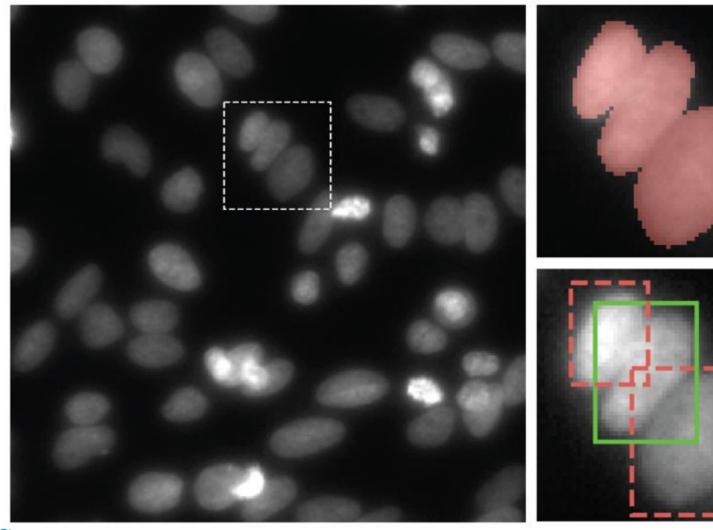
Strategy:

- \rightarrow Try to predict intensity of pixel y from surrounding pixels x
- → CNN fails to predict noise component → N2V can only reproduce signal from the surroundings of y
- → Only random/uncorrelated noise can be removed, otherwise artifacts occur

https://github.com/juglab/n2v

https://forum.image.sc/t/n2v-artefacts-in-training-data/70686

Noisy images + Crowded cells = Common source of segmentation errors



Dense Segmentation (e.g. U-Net)

Bounding box based methods (e.g. Mask-RCNN)

Schmid et al., MICCAI (2018), <u>https://github.com/stardist/stardist</u>

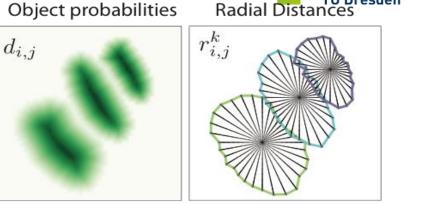
Dense Polygon Prediction (e.g. U-Net, ResNet)

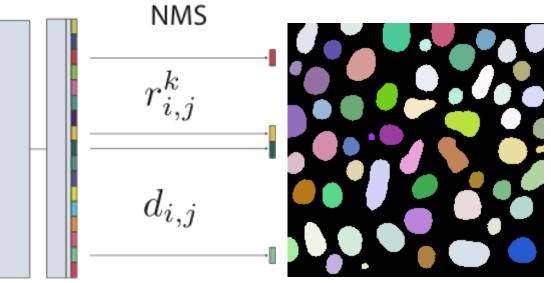
Polygon Selection (Non-Maximum Suppression NMS)

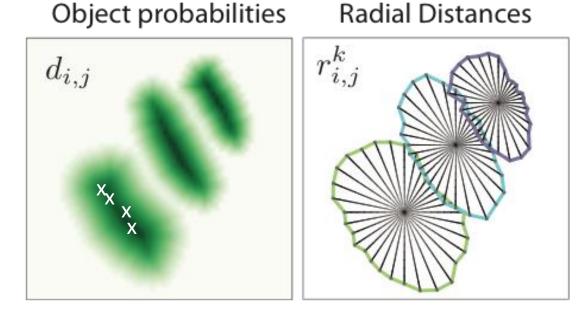
Schmid et al., MICCAI (2018), https://github.com/stardist/stardist

 \rightarrow Add additional information to prediction \rightarrow Member pixels of objects (nuclei) can be reached via a straight line from the center

Strategy:







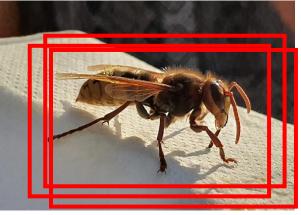
Non-maximum-suppression (NMS):

- \rightarrow Intersection over Union (IoU) threshold
 - τ determines "conservativeness":
 - High τ: Objects tend to be considered as separate objects
 - Low τ : Objects tend to be considered as the same objects

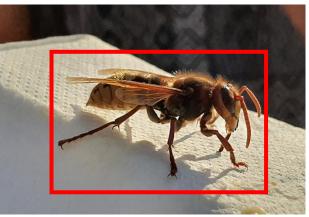
Problem:

- \rightarrow Multiple candidate points for nucleus center
- \rightarrow Overlapping instance predictions

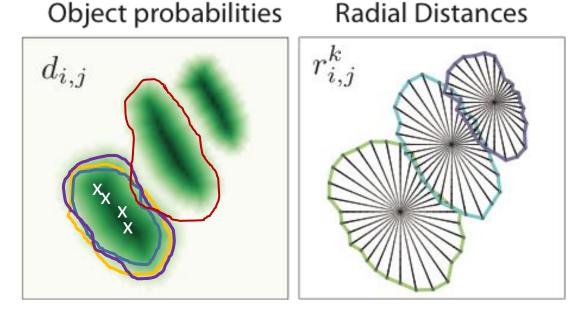
Before NMS



After NMS



Schmid et al., MICCAI (2018), <u>https://github.com/stardist/stardist</u>



Non-maximum-suppression (NMS):

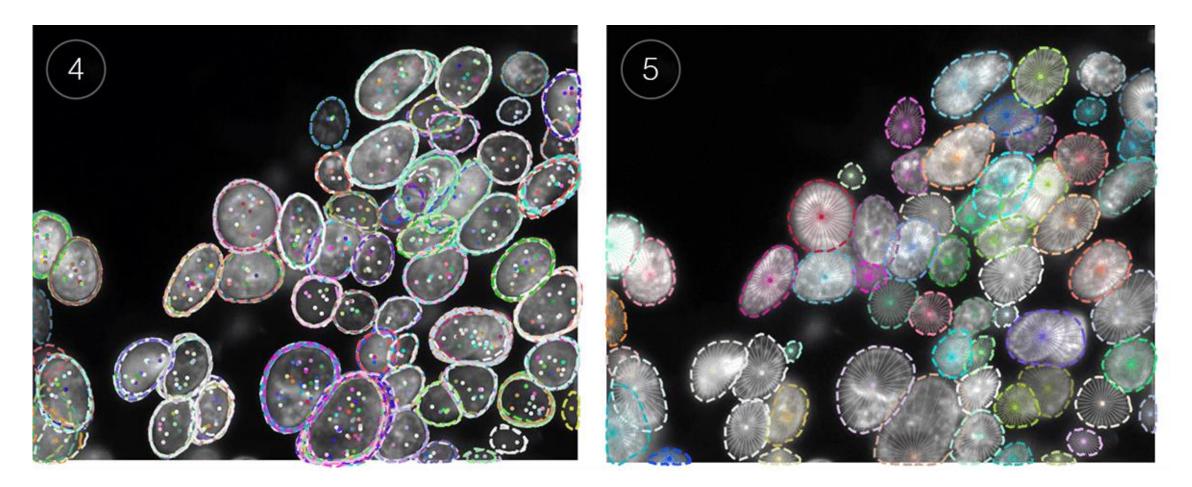
- → Object probabilities: Probability that pixel belongs to class "nucleus"
- → Multiple maxima lead to multiple possible polygons for the same nucleus

Algorithm:

- \rightarrow Select polygon with highest object probability inside: \bigcirc
- \rightarrow Look at other polygons: Is the overlap of \bigcirc with \bigcirc larger than threshold τ ?
 - \rightarrow Yes: \bigcirc and \bigcirc are actually the same object, drop \bigcirc
 - \rightarrow No: \bigcirc and \bigcirc are separate nuclei

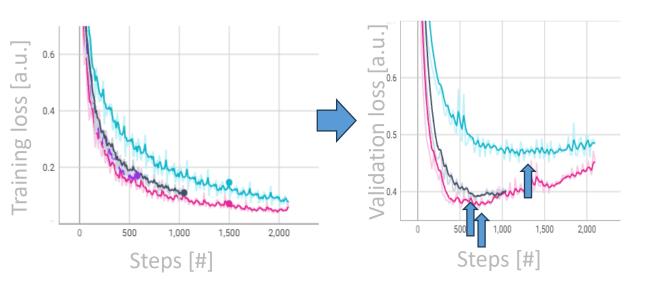
 \rightarrow Setting τ very high leads to many false positives!

Non-maximum suppression



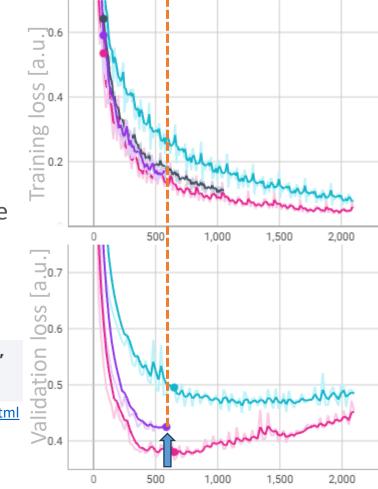
Schmid et al., MICCAI (2018), <u>https://github.com/stardist/stardist</u>

Overfitting



Overfitting:

- \rightarrow Network is learning things "by heart"
- → Hint at this happening: Updated weights from training fail to perform well in test



Strategies:

- ightarrow Save two models: Last model and best model may be susceptible to noise
- → Early stopping: End training loop preemptively if validation loss does not increase by ΔL within *n* episodes

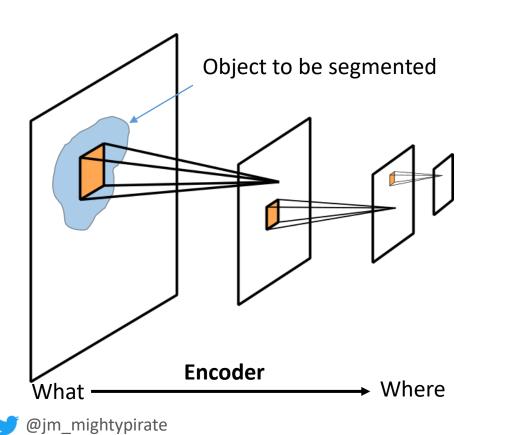
early_stop_callback = EarlyStopping(monitor="val_accuracy", min_delta=0.00, patience=3, verbose=False, mode="max") trainer = Trainer(callbacks=[early_stop_callback])

https://lightning.ai/docs/pytorch/stable/common/early_stopping.html

Many prediction frameworks use UNets – similar weak points

 \rightarrow Neurons in deeper layers can only "see" parts of the raw image

 \rightarrow Objects must be smaller than receptive field to be detectable/seen



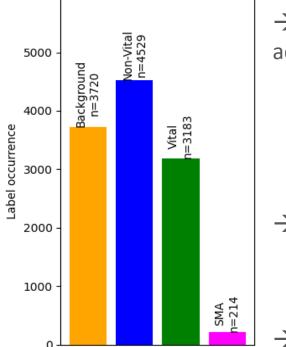
Strategies:

- Make network deeper (add more layers)
 - Increases receptive field ③
 - Increases number of weights and hardware requirements ③
- Resample input:

Think before: Which level of detail is actually required to perform the task at hand?

Unbalanced training data

Common case Heterogeneous occurrence of labels in training data



→ Rare events will not be caught because they don't harm accuracy much:

Example: Two classes to be predicted: Necrotic tissue (0.1% of tissue area) & Vital tissue (99.9% of tissue area) Simply predicting *everything* as vital leads to a high accuracy!

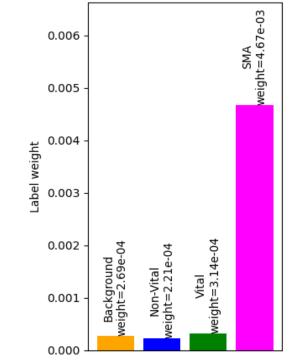
→ Problematic in detecting rare events: Rare pixel classes, few patients in study with specific mutation, rare disease

 \rightarrow Can happen intentionally or unintentionally

Is the iPhone racist? Chinese users claim iPhoneX face recognition can't tell them apart

APPLE has come under fire following numerous complaints from Chinese users who claim the iPhone X face recognition can't tell them apart.

https://www.news.com.au/

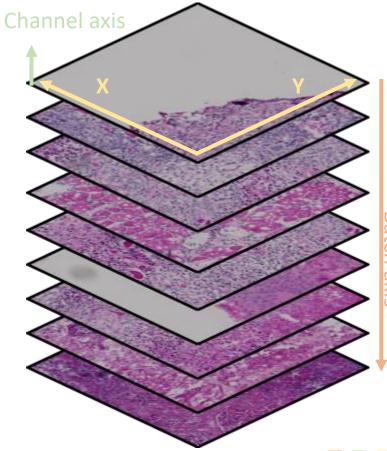


Strategy: Weighted sampling

→ During training, show rare samples more often to network than others

→ Still: More & better data > heavy weighting

• During training and validation, images and labels are stacked into *batches* and processed in parallel:



Array dimensions: array.shape = [B, C, X, Y]

🈏 @jm_mightypirate

Batch averaging

- Images in batches are z-scaled before forward pass through network:

 $batch' = \frac{batch - \mu(batch)}{\sigma(batch)}$

- Mean and standard deviation of batch:

$$\mu(batch') = 0 \& \sigma(batch') = 1$$

Pitfalls:

- Different regions/timepoints in image data can have very different intensity characteristics (bleaching, diffraction in depth, etc)
- Shuffle training data

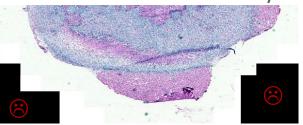
Create dataloaders

num_workers = 80

train_dataloader = DataLoader(dataset=train_dataset, batch_size=batch_size, num_workers=num_workers, shuffle=True test_dataloader = DataLoader(dataset=test_dataset, batch_size=batch_size, num_workers=num_workers) validation_dataloader = DataLoader(dataset=validation_dataset, batch_size=batch_size, num_workers=num_workers)

- Careful during inference! Microscopes sometimes automatically black

out/avoid certain "uninteresting regions – including these in the batch-averaging will mess up the prediction!



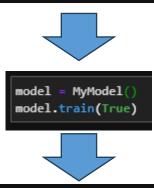
Information leakage

val_size = int(0.1 * len(MyDataset))
train_size = int(0.8 * (len(MyDataset) - val_size))
test_size = len(MyDataset) - val_size - train_size
train_dataset, test_dataset, validation_dataset = torch.utils.data.random_split(MyDataset, [train_size, test_size, val_size])

print('Samples in training set: ', len(train_dataset))
print('Samples in testing set: ', len(test_dataset))
print('Samples in validation set: ', len(validation_dataset))

Create dataloaders

num_workers = 80
train_dataloader = DataLoader(dataset=train_dataset, batch_size=batch_size, num_workers=num_workers, shuffle=True)
test_dataloader = DataLoader(dataset=test_dataset, batch_size=batch_size, num_workers=num_workers)
validation_dataloader = DataLoader(dataset=validation_dataset, batch_size=batch_size, num_workers=num_workers, shuffle=True)

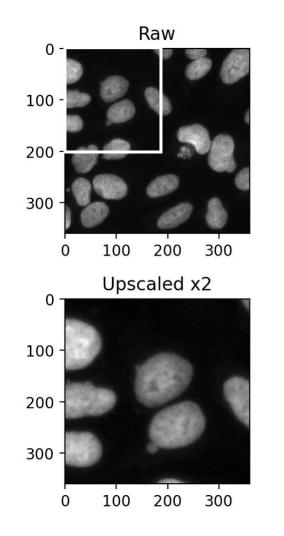


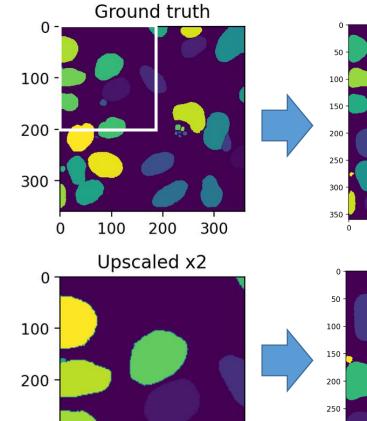
!!!Re-executing this cell multiple times mixes
testing/training/validation data!!!

- → Bad practice, don't do this at home
- → Better: separate notebook to create separate folders for training/testing/validation data which is only executed once!

trainer.fit(model, train_dataloaders=train_dataloader, val_dataloaders=validation_dataloader)

Example





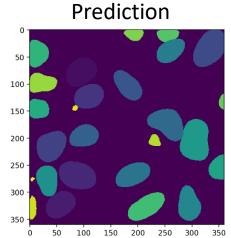
200

100

300

300 -

0



300 -

350 -

0

50 100

150 200

250 300 350

What happened here?

Receptive field too small

I used a different resolution than during training

Overfitting

Takeaways

• With great power comes great responsibility: Validate your models well!

Physics of Life TU Dresden

- Better data > better model
- Make model publicly available? \rightarrow Bio image model zoo: <u>https://bioimage.io/</u>

