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Convolutional neural networks
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Single neuron output calculation
𝑦 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏 = 𝑤𝑇𝑥 + 𝑏

Goal: Change 𝑤𝑖 so that 𝑦 = ො𝑦

Linear Non-linear

For image data, the values x1, x2,… would be

Pixel intensities Pixel coordinates

Filter kernel 
entries

Prediction
Gound truth

w1

w2

w3

Activation functions



@jm_mightypirate

Convolutional neural networks

• Layers
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Learning: Back propagation

• Learning is an optimization problem

• Step 0: Initialize the network randomly

• Weights

• Bias

• Step 1: Forward pass the input through the network, 
get an initial prediction (Images 0…M)

• Step 2: Compare the output with the ground truth, 
computer the error (loss function)

• The loss function can be freely defined.

• Mean squared error:

• Step 3: Update weights

Slide adapted from: Mahmood Nazari, TU Dresden
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Back-Propagation Algorithm 

The loss function can be expanded from

as the prediction depends on inputs x weights w 
and bias b

We can calculate derivatives with respect to 𝑤 and 
b to find their optimal values

→ Derivatives tell us how to change 𝑤 & 𝑏 in order 
to improve the prediction

Repeat this n times, each time update weights w

5

Slide adapted from : Mahmood Nazari, TU Dresden
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Image segmentation

• The U-net is the most used network architecture in biological image processing using CNNs.

• Encoder: Increase the “What”, decrease the “Where”

• Decoder: Increase the “Where”, decrease the “What”

Encoder Decoder

Ronneberger et al. (2015): U-Net: Convolutional Networks for Biomedical Image Segmentation

Where

What

Where



@jm_mightypirate

Object detection: YOLO & classification
YOLO: You only look once https://github.com/ultralytics/yolov5

locomotive

locomotive

Car

Wagon

Wagon

Annotations:

Class x y w h

0 0.09 0.48 0.09 0.22

0 0.22 0.53 0.2 0.27

1 0.56 0.49 0.21 0.30

1 0.68 0.49 0.09 0.12

2 0.9 0.57 0.17 0.23

height

width

Currently supported:
- Object detection
- Mask segmentation
- Object tracking

- Easy to train (only bounding boxes necessary)
- Currently restricted to 2D → still interesting for object detection, e.g. in smart microscopy
- Speed: < 10ms/frame (Yolo v5x) → Almost real-time for some cameras

https://github.com/ultralytics/yolov5
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Image denoising: CARE

• CARE: content-aware restoration

• Image acquisition of pairs of images: A high-quality and a low-quality image.

• Problem: Shot noise, Biology moves!

• Trained model only applicable to image data of the same conditions (biological system, microscope, etc)

https://csbdeep.bioimagecomputing.com/ 

https://csbdeep.bioimagecomputing.com/
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Image denoising: Noise2Void

Raw data = signal + noise

?

Raw data

Strategy:
→ Try to predict intensity of pixel y from surrounding pixels x
→ CNN fails to predict noise component → N2V can only 

reproduce signal from the surroundings of y
→ Only random/uncorrelated noise can be removed, otherwise 

artifacts occur

https://github.com/juglab/n2v 
https://forum.image.sc/t/n2v-artefacts-in-training-data/70686 

“Self-supervised training assumes that the noise is pixel-wise independent and that the true intensity of 
a pixel can be predicted from local image context”

Blind spot

CNN

Ground truth ො𝑦

Prediction 𝑦

ℒ Loss

https://github.com/juglab/n2v
https://forum.image.sc/t/n2v-artefacts-in-training-data/70686
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Stardist: Nucleus segmentation

Noisy images + Crowded cells  = Common source of segmentation errors

Dense Segmentation 
(e.g. U-Net)

Bounding box based methods
(e.g. Mask-RCNN)

Schmid et al., MICCAI (2018), https://github.com/stardist/stardist 

https://github.com/stardist/stardist
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Dense Polygon Prediction 
(e.g. U-Net, ResNet)

Polygon Selection 
(Non-Maximum Suppression NMS)

Stardist: Nucleus segmentation

Strategy:
→Add additional information to prediction
→Member pixels of objects (nuclei) can be reached 

via a straight line from the center

Schmid et al., MICCAI (2018), https://github.com/stardist/stardist 

https://github.com/stardist/stardist
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Stardist: Nucleus segmentation

xx
x
x

Problem:
→ Multiple candidate points for nucleus center
→ Overlapping instance predictions

Schmid et al., MICCAI (2018), https://github.com/stardist/stardist 

Non-maximum-suppression (NMS):
→Intersection over Union (IoU) threshold 

τ determines „conservativeness“:
High τ: Objects tend to be considered as
separate objects
Low τ: Objects tend to be considered as
the same objects

Before NMS After NMS

https://github.com/stardist/stardist
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Stardist: Nucleus segmentation

xx
x
x

Non-maximum-suppression (NMS):
→Object probabilities: Probability that pixel 

belongs to class “nucleus”
→Multiple maxima lead to multiple possible 

polygons for the same nucleus

Algorithm:
→ Select polygon with highest object probability inside:
→ Look at other polygons: Is the overlap of      with      larger than threshold τ?

→Yes:      and     are actually the same object, drop 
→No:      and       are separate nuclei  

→ Setting τ very high leads to many false positives!

Schmid et al., MICCAI (2018), https://github.com/stardist/stardist 

https://github.com/stardist/stardist
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Stardist: Nucleus segmentation

Non-maximum suppression

Schmid et al., MICCAI (2018), https://github.com/stardist/stardist 

https://github.com/stardist/stardist
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Overfitting

Overfitting:

→ Network is learning things „by heart“ 
→ Hint at this happening: Updated weights 

from training fail to perform well in test
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Strategies:

→ Save two models: Last model and best model – may be susceptible to noise
→ Early stopping: End training loop preemptively if validation loss does not 

increase by Δ𝐿 within n episodes

https://lightning.ai/docs/pytorch/stable/common/early_stopping.html 
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https://lightning.ai/docs/pytorch/stable/common/early_stopping.html
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Receptive field

Many prediction frameworks use UNets – similar weak points

→Neurons in deeper layers can only “see” parts of the raw image

→Objects must be smaller than receptive field to be detectable/seen

Object to be segmented

Strategies:

- Make network deeper (add more layers)

▪ Increases receptive field ☺

▪ Increases number of weights and hardware 
requirements  

- Resample input:

Think before: Which level of detail is actually 
required to perform the task at hand?

Encoder
What Where
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Unbalanced training data

Common case Heterogeneous occurrence of labels in training data

https://www.news.com.au/ 

→ Rare events will not be caught because they don’t harm 
accuracy much:

Example: Two classes to be predicted: Necrotic tissue 
(0.1% of tissue area) & Vital tissue (99.9% of tissue area)
Simply predicting everything as vital leads to a high 
accuracy!

→ Problematic in detecting rare events:
Rare pixel classes, few patients in study with specific 
mutation, rare disease

→Can happen intentionally or unintentionally 

Strategy: Weighted sampling

→ During training, show rare samples more 
often to network than others

→ Still: More & better data > heavy weighting

https://www.news.com.au/
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Batch averaging

• During training and validation, images and labels are stacked into batches and processed in parallel:

Array dimensions: array.shape = [B, C, X, Y]

B
atch

 axis

Channel axis

X Y

Batch averaging
- Images in batches are z-scaled before forward pass through network:

𝑏𝑎𝑡𝑐ℎ′ =
𝑏𝑎𝑡𝑐ℎ − 𝜇(𝑏𝑎𝑡𝑐ℎ)

𝜎(𝑏𝑎𝑡𝑐ℎ)
- Mean and standard deviation of batch:

𝜇 𝑏𝑎𝑡𝑐ℎ′ = 0 & 𝜎 𝑏𝑎𝑡𝑐ℎ′ = 1
Pitfalls:
- Different regions/timepoints in image data can have very different 

intensity characteristics (bleaching, diffraction in depth, etc)
- Shuffle training data

- Careful during inference! Microscopes sometimes automatically black 
out/avoid certain “uninteresting 
regions – including these in the
batch-averaging will mess up the
prediction! 
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Information leakage

!!!Re-executing this cell multiple times mixes 
testing/training/validation data!!!
→ Bad practice, don’t do this at home
→ Better: separate notebook to create separate folders for 

training/testing/validation data which is only executed once!
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Example

Prediction

What happened here?

Receptive field too small

I used a different resolution 
than during training

Overfitting
?
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Takeaways

• With great power comes great responsibility: Validate your models well!

• Better data > better model

• Make model publicly available? → Bio image model zoo: https://bioimage.io/ 

https://bioimage.io/
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