Feature Extraction in Python PoL Bio-Image Analysis Training School & Symposium 29 August 2023

Allyson Quinn Ryan, PhD BiA-Pol & Modes Group

What defines a feature?

a quantification or relationship that describes your system

What do we need to consider first?

object type, neighbourhoods, structuring elements... ---- feature categories

Feature Classes: Size

bounding box

pixel/voxel count

area; volume (scaling info req)

> perimeter; surface area

convex hull

CONVEX area/volume

Feature Classes: Intensity

sum, median, variance, etc.

standard deviation

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$$

(subclass: texture)

Intensity: all foreground objects

mean, minimum, maximum, standard deviation, etc.

Intensity: individual objects

mean, minimum, maximum, standard deviation, etc.

Feature Classes: Position & Moments

(doodad from Mara Lampert)

★ centroid/centre of mass/ weighted center

 $\boldsymbol{R} = \frac{1}{M} \iiint_{Q} \rho(\boldsymbol{r}) \boldsymbol{r} dV$

orientation

 $v = \langle x, y \rangle$

1st moment centre of mass 2nd moment intertial; variance 3rd moment shape assymmetry ; skewness

Feature Classes: Shape

solidity

$$S = \frac{V_{obj}}{V_{ch}}$$

$$4\pi A$$
 .

roundness

$$R = \frac{4\pi A_{obj}}{P_{ch}^2}$$

sphericity
$$\psi = \frac{\pi^{1/3} (6V)^{2/3}}{SA}$$

circularity

$$C = \frac{4\pi A}{P^2}$$

Pitfalls in measurement robustness.

- 40 - 35 - 30 - 25 - 20 - 15 - 10

Pitfall example: perimeter calculation

$\sqrt{2}$	1	$\sqrt{2}$
1		1
$\sqrt{2}$	1	$\sqrt{2}$

Pitfall example: perimeter calculation

$\sqrt{2}$	1	$\sqrt{2}$
1		1
$\sqrt{2}$	1	$\sqrt{2}$

1.0

Out[9]: 252.59797974644667

separate N_4 and N_8

boundary components

Dealing with complex shapes in 3D...

Dealing with complex shapes in 3D...

Meshes can reduce discretisation errors.

marching cubes mesh creation

nppas.SurfaceTuple

[0. 0.	origin (z/y/x)
57.605,308.700,440.9	enter of mass(z/y/x)
1.000,1.000,1.0	scale(z/y/x)
13.911112.1 111.132461.7 169.884807.9	bounds (z/y/x)
170.7	average size
33	number of vertices
66	number of faces

Important Documentation & Reading

skimage.measure offers many functions for feature extraction from images (particularly region props):

https://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.regionprops

vedo.mesh is useful for shape, size and positional feature extraction:

https://vedo.embl.es/docs/vedo/mesh.html

pyclesperanto_prototype offers many example workflows for intensity, size and positional features:

https://github.com/clEsperanto/pyclesperanto_prototype

FocalPlane feature extraction blogpost by Mara Lampert

https://focalplane.biologists.com/2023/05/03/feature-extraction-in-napari/