{ "cells": [ { "cell_type": "markdown", "id": "3b84ddbc-2079-48c9-a38b-b0a34abd6d27", "metadata": {}, "source": [ "# Plotting Distributions with Seaborn" ] }, { "cell_type": "markdown", "id": "66ebc29e-9f74-4333-ab93-9e163d1d5ce7", "metadata": {}, "source": [ "With Seaborn, it is also very practical to plot data distributions. We start with simple boxplots and bar graphs. Then, we show how to plot histograms and kde." ] }, { "cell_type": "code", "execution_count": 2, "id": "ec137599-b8bd-4666-b5f7-13e94243b50e", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "sns.set_theme()" ] }, { "cell_type": "markdown", "id": "88932903-b980-42a3-b6e8-3f42327735c6", "metadata": {}, "source": [ "Let's load the same dataframe." ] }, { "cell_type": "code", "execution_count": 3, "id": "c0a502d8-9181-47b4-8e6b-63b37ed3a8d4", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
areaintensity_meanmajor_axis_lengthminor_axis_lengthaspect_ratiofile_name
013996.54676317.50410410.2927701.70062120P1_POS0010_D_1UL
136086.61388935.74680814.9831242.38580520P1_POS0010_D_1UL
24391.48837212.9678844.3515732.98004520P1_POS0010_D_1UL
314073.74285718.94050810.3144041.83631620P1_POS0010_D_1UL
414489.37500013.63930813.4585321.01343220P1_POS0010_D_1UL
\n", "
" ], "text/plain": [ " area intensity_mean major_axis_length minor_axis_length aspect_ratio \\\n", "0 139 96.546763 17.504104 10.292770 1.700621 \n", "1 360 86.613889 35.746808 14.983124 2.385805 \n", "2 43 91.488372 12.967884 4.351573 2.980045 \n", "3 140 73.742857 18.940508 10.314404 1.836316 \n", "4 144 89.375000 13.639308 13.458532 1.013432 \n", "\n", " file_name \n", "0 20P1_POS0010_D_1UL \n", "1 20P1_POS0010_D_1UL \n", "2 20P1_POS0010_D_1UL \n", "3 20P1_POS0010_D_1UL \n", "4 20P1_POS0010_D_1UL " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(\"../../data/BBBC007_analysis.csv\")\n", "df.head()" ] }, { "cell_type": "markdown", "id": "ed4b3c99-c91c-46e5-b83f-0767205dfca5", "metadata": {}, "source": [ "## Boxplots" ] }, { "cell_type": "markdown", "id": "b78a5029-eab9-4b2f-af69-2009535172d5", "metadata": {}, "source": [ "The axes function for plotting boxplots is `boxplot`.\n", "\n", "Seaborn already identified `file_name` as a categorical value and `ìntensity_mean` as a numerical value. Thus, it plots boxplots for the intensity variable. If we invert x and y, we still get the same graph, but as vertical bosplots." ] }, { "cell_type": "code", "execution_count": 4, "id": "3e9fcfc2-8634-4f80-b361-538c5e084117", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAEJCAYAAABWoxRRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAboElEQVR4nO3de5RcZZnv8W9oAgQCHbkJagQReUAQghE9TgSyUIYjXtBB4ZggwhHwAksZQfACiCfKGM8BZxxBRlEREeGMOOIFL9xvozioCBh5gDmQhBEkAkkIEMilzx97d+y0Xd3VoXdXv53vZ62s1bWvz1tVqV+9796194Senh4kSdLYtkGnC5AkSUMzsCVJKoCBLUlSAQxsSZIKYGBLklSADTtdgMatjYF9gIeAVR2uRZJK0AVsD/wH8Ez/mQa2mrIPcFOni5CkAu0L3Nx/ooGtpjwE8PjjT7J6dTm/9d9qq8k8+uiyTpcxYsZbe2D8tWm8tQfGX5tGqz0bbDCB5z1vM6g/P/szsNWUVQCrV/cUFdhAcfUOZby1B8Zfm8Zbe2D8tWmU2zPgYURPOpMkqQAGtiRJBTCwJUkqgIEtSVIBDGxJkgpgYEuSVAADW5KkAvg7bEljziWXXMTChfMHnDdxYhcrVnT2ardLliwGoLt7ynPeVifaM3XqDsyadeSo7lPPnYEtacxZuHA+ee99dG0ypdOlDGjV8sUALFq6srOFrIPe2lUeA1vSmNS1yRQ23eH1nS5jQE/NvwZgzNY3mN7aVR6PYUuSVAADW5KkAhjYkiQVwMCWJKkABrYkSQUwsCVJKoCBLUlSAQxsSZIKYGBLklQAA1uSpAIY2JIkFcDAliSpAAa2JEkFMLAlSSqAgS1JUgEMbEmSCmBgS5JUAANbkqQCGNgac2655UZuueXGTpchSQBce+21Y+IzycDWmHPzzTdw8803dLoMSQLgqquuGhOfSQa2JEkFMLAlSSqAgS1JUgEMbEmSCmBgS5JUAANbkqQCGNiSJBXAwJYkqQAGtiRJBTCwJUkqgIEtSVIBDGxJkgpgYEuSVAADW5KkAhjYkiQVwMCWJKkABrYkSQUwsCVJKsCGTW48Ij4FHFY//HFmnhIRbwDOASYBl2XmafWyDwBPAc8CE4CVwMmZeV2f7R0IfCwzXz/EfmcCPwLuA3rqfd0FHJ2ZT9TLnAi8D1hV7+srmXlePW8CcCbw9nr9Z4AzMvOn9fxWbZgGXABsAdwIvD8zV/apaw6wKjPPrB9PAb4N7AQsAg7LzIcHaddR9X4X1M/RxsB3gM9k5qrBnpN6/RcCt2Xm9vXjHYHrM3PHfsv1ZOaEen8zM/OoobYtSWpWYz3sOtT+FtgbmAZMj4h3AV8HDgF2A/aJiDf2We3gzJyWmXtRBeYl9bY2iIiTgEuBrjZLuK3e1t6ZuWs97RP19s4E3koVRnsABwKzI+L0ernDgOnAK+tajgC+FRHbRsSkQdpwMXBCZu5CFajH1vvrjoivASf1q/EzwE2ZuRvwVeCf2mjXD/o8R9OBfameq0FFxMHAdcB2bexDkjTGNNnDfgg4KTOfBYiIPwC7APdm5v31tIuBdwI/GWD964DtImIrqpDZjSoAP7SO9VwPHBQRmwIfBXbPzD8BZOaiiDgWuDUizq7310XVg12ZmfdExDuAFcCrB2pDRMwDJmXmL+v9XQh8GvgyVbjfC5zdr6Y3AfvVf38HODciJmbminYalJlPRsQngCsj4ozM7Blk8fcCfwfc2c62O2nJksUsWbKEuXPnjPq+J07sYsWKIQcrilFqexYsmM/qVe1+N9dwrF65nAUL5jf6/6vU910rCxfOZ4stujtdRnM97Mz8fW94RcTLqHqtq6mCvNdDwItabGIWVTA+Wm/rGOCxdaklIjaj6lH/AtgdeDIzH+hX7zyqoe9dgYuohrUXRcTPIuLUapF8HHhBiza0mk5mXpSZn6Mafu9rzTr10PlSYJthNu8uYKuh1svMQzPzrmFuW5I0RjR6DBsgInYHfkzVq11J1cvuNYEqxHtdGRHPAhtRHac9jHX3qoi4vf57InAt1fHfPWjd7olATx3MMyLiFVTD5W8BTomIfai+5PTtyfa2odX0wUwY4PFQ6/TXu8+nh7keA+2rPn4/WE+9cd3dU+junsKpp54+9MIjbJttNmfRoidGfb9NKbU9c+fO4b6Ff+50GePSBhtuwounbt3o/69S33etnHPOWWNixKDpk85mAJcDJ2bmpRGxP7B9n0W2A/7Y5/HB/Xu+z8FtmTlzgJrmARMjIjIz+0zfnSp0MyI+AlyTmb+jGkI+JyK+DRwK/KpFGx5sMX0w/1Uv92BEbAhsDjw6rFbCnsCDvSfTDdPjQP9xnm3r6ZKkMaTJk86mAt8HZmXmpfXkW6tZsXNEdFENew90/LoxmfkU8FngaxGxbV3rtlQnfX2+nt8NzImIyfX8LYCXAre3akNmzgeW119SAN7N0G27Ejiy/vtwqhPQ2jp+XdfVDcwBzm13nb7qkL83Ig7tM/k44Op12Z4kqTlN9rBPBjah6p32TjsfOIqq170JVWB9t8EaBpSZn4uIxcDVEdE7lH1+ZvYG3xyqUL8jIpZTDR1/KTOvgjU/rxqoDbOBr9YB/xvgi0OUcjpwYUT8Hlhcrz+Ut9ZD/T1Ur9/lwNw21mvlCODLEXEG1aGIO4Dj+8yfXZ9w1+uszDzrOexPkrQOJvT0dPRwpcavHYH7H310GatXD+891nv2qsewn7tS29N7DHvTHQa95ELHPDX/GoAxW99gnpp/DTt7DHtYeo9hN/2ZtMEGE9hqq8kALwEe6D+/8ZPOmhIRhwMfH2heZk4b3WpGTkT8PfCeAWb9MTMPHmS9cfl8SJIqxQZ2Zl4GXNbpOkZaZn4B+MI6rDcunw9JUsVriUuSVAADW5KkAhjYkiQVwMCWJKkABrYkSQUwsCVJKoCBLUlSAQxsSZIKYGBLklQAA1uSpAIY2JIkFcDAliSpAAa2JEkFMLAlSSpAsbfX1Pj1utft3+kSJGmNAw88kKVLn+50GQa2xp4ZM/brdAmStMYBBxzAokVPdLoMh8QlSSqBgS1JUgEMbEmSCmBgS5JUAANbkqQCGNiSJBXAwJYkqQBt/w47Il4N7A18A5iemb9orCpJkrSWtnrYEXEUVVCfAkwBroiIY5srS5Ik9dXukPiHgNcCSzPzEWA6cGJTRUmSpLW1G9irMnNp74PMXAisbKYkSZLUX7uB/VhETAN6ACJiNvBYU0VJkqS1tXvS2YeB7wIvjYiHgKeBQxqrSpIkraWtwM7MuyNiL2AXoKualCsarUySJK3RVmBHxCSqHvWW9aT9IoLMPK+xyiRJ0hrtDon/kOrnXPf3mdYDGNiSJI2CdgP7hcDLM7OnyWIkSdLA2j1L/E7g+U0WIkmSWmu3h/2vwN0RcSew5mSzzDygkaokSdJa2g3sTwFnAf/ZYC2StMaq5Yt5av41nS5jQKuWLwYYs/UNpqp9606XoXXQbmA/mZmfb7QSSapNnbpDy3kTJ3axYsWqUazmry1ZUn10dndPec7bGv32bD3o86uxq93Avjoijge+BzzTOzEzvdqZpBE3a9aRLedts83mLFr0xChW06zx1h41p93A/giwMfDPfab1UF1ERZIkNazdK51NaroQSZLUWrtXOtsIeBMwGZhA1bPeOTM/2WBtkiSp1u6Q+GXATsD2wG+B1wDXN1STJEnqp90Lp0wDpgNXACcCM/jLdcUlSVLD2g3shzJzJXAPsEdm/h7obq4sSZLUV7uBvSwiZgG/Aw6LiFdQHc+WJEmjoN3APp5qWPwqYDVwI/B/GqpJkiT10+7Puu4FTqkfHt5cOZIkaSDt/qzrtVTXEt+S6mddAGTmng3VJUmS+mj3Z13/AlwI/IbqCmeSJGkUtRvYKzPznEYrkSRJLbV70tld9ZnhkiSpA9rtYe8E/Doi5gNP9070GLYkSaOj3cBuec3wiHhZfRa5JElqSLs/67phkNmXAa8cmXIkSdJA2j2GPZgJQy8iSZKei5EIbH/mJUlSw9o9hi1JjbnkkotYuHB+W8tOnNjFihWrGq4IlixZDEB395RG9zNS7Zk6dQdmzTpyBCrSWGVgS+q4hQvn88B9d7Pd5KE/kpaPQj0Ajy9bCcDGT/+50f2MRHsermvV+GZgSxoTtpu8IUfvuWWny1jjG3c8BjCmamqlt1aNbyNxDPueEdiGJEkaRLs3/5gMzAV2Bd4J/ANwUmYuy8z/0WB9kiSJ9nvYXwQWA8+nOuSyBfCVhmqSJEn9tBvYe2fmJ4EVmfkUMBuY1lhVkiRpLe0Gdv/fHHQBq0e4FkmS1EK7gX1jRMwFJkXEQcD3gOuaK0uSJPXVbmCfCiwDlgCfBe4APtpUUZIkaW3t3vxjBTCn/idJkkbZoIEdEXcyyLXCvR+2JEmjY6ge9gmjUoUkSRrUUMew/1TfC/uJFv8kSdIoGKqHfTbwJuBXwALWvvd1D7BTQ3VJkqQ+hgrsXSPiBcA8YCZVYHv/a0mSRtlQgf1zYGH996I+03uDu6uJoiRJ0toGDezM/ADwgYi4MTP3G6WaJElSP21dOMWwliSps0biftiSJKlhBrYkSQUwsCVJKoCBLQ3illtu5JZbbux0GZIK0eRnRls3/5DWVzfffAMAM2Z43qWkoTX5mWEPW5KkAhjYkiQVwMCWJKkABrYkSQUwsCVJKoCBLUlSAQxsSZIKYGBLklQAA1uSpAIY2JIkFcDAliSpAAa2JEkFMLAlSSqAgS1JUgEMbEmSCmBgS5JUAANbkqQCGNiSJBVgwyY3HhGfAg6rH/44M0+JiDcA5wCTgMsy87R62QeAp4BngQnASuDkzLyuz/YOBD6Wma8fYr8zgR8B9wE99b7uAo7OzCfqZU4E3gesqvf1lcw8r543ATgTeHu9/jPAGZn503p+qzZMAy4AtgBuBN6fmSsj4sXAxcC2QAKzM3NZRNzGX16DScBLgRdm5p9atOuoer8L6udoY+A7wGcyc9Vgz0m9/guB2zJz+/rxjsD1mbljv+V6MnNCvb+ZmXnUUNuWJDWrsR52HWp/C+wNTAOmR8S7gK8DhwC7AftExBv7rHZwZk7LzL2oAvOSelsbRMRJwKVAV5sl3FZva+/M3LWe9ol6e2cCb6UKoz2AA4HZEXF6vdxhwHTglXUtRwDfiohtI2LSIG24GDghM3ehCtRj6+nnAefVddwGnA6Qma+qa5wG3Er1pWDAsO7jB32eo+nAvvVzNaiIOBi4DthuqGUlSWNPkz3sh4CTMvNZgIj4A7ALcG9m3l9Puxh4J/CTAda/DtguIraiCpndqALwQ+tYz/XAQRGxKfBRYPfecMzMRRFxLHBrRJxd76+Lqge7MjPviYh3ACuAVw/UhoiYB0zKzF/W+7sQ+HREXADsB7ytz/QbgFN7C4uI1wN7AUcPp0GZ+WREfAK4MiLOyMyeQRZ/L/B3wJ3D2cf6bsmSxSxZsoS5c+d0upR1MnFiFytWDDn40nELFsxnU1Z3uoxiLXt2NY8smD9m3qelvO/aNZz2LFgwn+7u7kbqaKyHnZm/7w2viHgZVa91NVWQ93oIeFGLTcyiCsZH620dAzy2LrVExGZUPepfALsDT2bmA/3qnUc19L0rcBHVsPaiiPhZRJxaLZKPAy9o0YZW07cGlmbmykHa/Gngk+0Maw/gLmArYJvBFsrMQzPzrnXYviRpDGj0GDZAROwO/JiqV7uSqpfdawKs9bX6yoh4FtiI6jjtYay7V0XE7fXfE4FrqY7/7kHrdk8EeupgnhERr6AaLn8LcEpE7EP1JadvT7a3De1Ohz5trp+frTPzR8NtYK1320+vw7p/1aWpj98P1lNfr3R3T6G7ewqnnnr60AuPQdtsszmLFj3R6TKGNHfuHJY/fF+nyyjW5I02YOvtdhgz79NS3nftGk57mhzlaPqksxnA5cCJmXlpROwPbN9nke2AP/Z5fHD/nu9zcFtmzhygpnnAxIiIzMw+03enCteMiI8A12Tm76iGkM+JiG8DhwK/atGGB1tMfwTojoiuuge9PWu3+W3AZc+hnXsCD/aeTDdMjwP9x262radLksaQJk86mwp8H5iVmZfWk2+tZsXOEdFFNew90PHrxmTmU8Bnga9FxLZ1rdsCXwU+X8/vBuZExOR6/hZUZ3Df3qoNmTkfWF5/SQF4dz19BXATcHg9/UjWbvNr6/nDFhHdwBzg3HVZvw75eyPi0D6TjwOuXpftSZKa02QP+2RgE6reae+084GjqHrdmwBXAt9tsIYBZebnImIxcHVE9A5Zn5+ZvcE3hyrU74iI5VRDx1/KzKtgzc+rBmrDbOCrdcD/BvhiPf2DwDcj4jSqof539SlnJ6reebveWg/191C9fpcDc4exfn9HAF+OiDOoDkXcARzfZ/7s+oS7Xmdl5lnPYX+SpHXQWGBn5oeBD7eYvdcAy+/YxjavB2aOxHKZeT7VF4iB5q2kOov71Bbzr2HgNvyO6izy/tPnt6onM18+WJ39lr2Q6izzdZaZE/o9vgcY8HftI7E/SdLIaPyks6ZExOHAxweaV/+uuUgR8ffAewaY9cfMPHiQ9cbl8yFJqhQb2Jl5Gc/tZK0xKTO/AHxhHdYbl8+HJKnitcQlSSqAgS1JUgEMbEmSCmBgS5JUAANbkqQCGNiSJBXAwJYkqQAGtiRJBTCwJUkqgIEtSVIBDGxJkgpgYEuSVAADW5KkAhjYkiQVoNjba0qj4XWv27/TJUgqSJOfGQa2NIgZM/brdAmSCtLkZ4ZD4pIkFcDAliSpAAa2JEkFMLAlSSqAgS1JUgEMbEmSCmBgS5JUAANbkqQCGNiSJBXAwJYkqQAGtiRJBTCwJUkqgIEtSVIBDGxJkgpgYEuSVAADW5KkAhjYkiQVwMCWJKkAG3a6AEkCeHjZSr5xx2OdLmONh5etBBhTNbXy8LKV7NjpItQ4A1tSx02dukPby06c2MWKFasarKbyvCWLAdike0qj+xmJ9uzI8J5DlcnAltRxs2Yd2fay22yzOYsWPdFgNaNrvLVHzfEYtiRJBTCwJUkqgIEtSVIBDGxJkgpgYEuSVAADW5KkAhjYkiQVwMCWJKkAXjhFTekC2GCDCZ2uY9hKrHkw4609MP7aNN7aA+OvTaPRnj776Bpo/oSenp7Gi9B66XXATZ0uQpIKtC9wc/+JBraasjGwD/AQ0PyFnyWpfF3A9sB/AM/0n2lgS5JUAE86kySpAAa2JEkFMLAlSSqAgS1JUgEMbEmSCmBgS5JUAANbkqQCeGlSrZci4hjghD6TXgJ8C/g+cA4wCbgsM08b/erWXUQcAXy8fviTzDw5It5AoW2KiI8BR1NdROKyzPxsie2JiC2AfwfenJkPtGpDREwDLgC2AG4E3p+ZKztT9eD6t6medhFwbWZeWD9+MXAxsC2QwOzMXNaRgocwwGt0HPAhoAe4DXhfZj7bydfIHrbWS5l5QWZOy8xpwGzgEWAu8HXgEGA3YJ+IeGPnqhyeiNgU+CKwP7AXsG9EvIVC21SH2iyqK+btDbwmImZTWHsi4jVUl5ncpX48idZtuBg4ITN3ASYAx45+xUMboE0viIgfAu/ot+h5wHmZuStV6J0+qoW2aYD27AJ8FPgbYE+qrDy+Xrxjr5GBLcGXgU8AOwH3Zub99Tfmi4F3drSy4emi+j+9GTCx/reUctu0N/CzzFyamauAnwLHUF57jqX6sP9j/fjVDNCGiNgBmJSZv6yXu5Cx27b+bZoNXAH8394FImIisB/w3XrShZTTnmeAD9bvvR7gTuDFnX6NDGyt1+pe3KTM/FfgBVTXPu/1EPCijhS2DjLzCaoezN3Ag8ADlN2m3wAHRcSWEbEJ8Faqm8oU1Z7MPCYz+94Ip9VrUsxr1b9Nmfm/M/OCfottDSztM1xcUnvmZ+ZVABGxDdXhsyvo8GtkYGt99z6qY4lQ/X/oe3H9CcDqUa9oHUXEnsD/BHag+mBZRTXEV2SbMvMaqh7M9VS965upzrspsj19tHqfFf3+G0D/9kBh7YmIFwLXAF/LzOvp8GtkYGu9FREbUR3v/UE96UGqO+X02o6/DJGV4CDgmsx8JDOfoQq7mRTapojYHLg8M/fMzJlUw5TXU2h7+mj1Piv9/dffI0B3RPTe23l7CmpPROxKdRLaNzNzTj25o6+Rga312Z7APZn5ZP34ViAiYuf6Q2YW8JOOVTd8vwPeEBGbRcQE4C2U3aaXAFdExIYR0Q28FziNctvTa8DXJDPnA8sjYka93Lspr21rZOYK4Cbg8HrSkRTSnvrL4s+B0zLz7N7pnX6NDGytz3ai+sYMQGYuB44CLgfmUR0L/u6Aa45Bmflz4DvAr4E7qE46O5NC25SZd1DVfQfwK+AfM/MWCm1PryHeZ7OBL0TE3cBkqrP+S/ZB4LiImAfsS/WFqwTHAM8HToqI2+t//6ue17HXyPthS5JUAHvYkiQVwMCWJKkABrYkSQUwsCVJKoCBLUlSAQxsSSMuIl4VEYP+3CoizoiIQ5rcd0TsExHnj/Q+pE7w9pqSRlxm3sZf37mpvwOofofc5L53Z4xev1oaLn+HLWnERcRM4EtUt1RcCrwCmEp1EZQjgfdQ3c50EfAR4Mf14/2p7jr2W+BDmbk0Ih6guszq64EXAxdl5ukRMRn4BvAyqus5/5rq2vD71ft+I3AL0A18D1gJPJKZn6xrPAI4NDPfPkg7LgSequt/PtVlbB+luorcdsAxmXltfZnbVvW/mepucBtR3Rf6m3X9M4HPAv8P2IPqQjfvqy8OI/0Vh8QlNW068N+p7v28I/DOzDyXKsw/mpn/BnyMKlCnZ+ZeVNdn/lyfbUzOzH2p7k98ckS8BHg7sHl9T/N96uV26l0hMxcCZwA3ZebRwLnA0RHRO7J4HNDOcPkrqUYD9gNOApZl5t8A/1TXTav660vEngS8JzNfBfw34OMRsXW93muAszNzb6ovH2e1UY/WUwa2pKb9NDOfqa8tfSew5QDLvBk4BPhtRNwOvA14eZ/5VwBk5n9R3VRiS6q7d+0eEddTBeY/ZuZ9rYrIzNuB+4E3RcRuVHc0+3kb9f8wM1dk5sPAk1R3DgP4zz5tGbD++l7KbwGmR8SnqO4MN4HqnuUA8+u6oLqd6EDPjQR4DFtS857u83cPVWD11wV8ODN/AlAPd28y2DYy8/6I2JnqjmQHAFdHxHHAE4PUci7VLUjvAb5SB+pQnun3eEW79UfEZlTD4/9GdSOMr1OFee9z0M5zIwEGtqTOWUl13BbgZ8AJEXFNPf2rwDLg2FYrR8QHqG4oMTszfxYRz6cavr6hxT6gusnG56ju1LYPI6dV/ecCW1Dd9enZiHg3sDFVwEvD4pC4pE75AfAPEfEeYA7wAFVvdB5VT/OkIda/iCr45kXEr6lOLut/56RfAjtFxPcAMvNZqtD+98z88wi1A1rXfwfwI+DuiPgD1fD4PGDnEdy31hOeJS5pvVEPUd8IHJ+Zv+x0PdJwOCQuab0QEQdR3S/8vN6wjogALmuxSmbm4aNVnzQUe9iSJBXAY9iSJBXAwJYkqQAGtiRJBTCwJUkqgIEtSVIBDGxJkgrw/wGk2/UtX7tmJQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.boxplot(data=df, x=\"intensity_mean\", y=\"file_name\")" ] }, { "cell_type": "markdown", "id": "84b6a793-7829-45a7-9ecf-8c824ca5aed3", "metadata": {}, "source": [ "The figure-level, and more general, version of this kind of plot is `catplot`. We just have to provide `kind` as `box`." ] }, { "cell_type": "code", "execution_count": 5, "id": "c9b2cd94-b738-4c18-b30a-c2b5bcb5fc32", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAaMUlEQVR4nO3de5RdZZnn8W9RFBAkqQgEgxhJI/JAcxfRsYPA8tKOKF4ahTEoFxu8NCxbAcULID1R2rgG6LYFGRFBBhHWqK22iBcQCKRbXagIiDxADyShBYkBQgIGKknNH3uXFmWdqpOqs+tNqr6ftWqlzr68+3lPVX71nnfvs09Xf38/kqSJt1npAiRpqjKAJakQA1iSCjGAJakQA1hN2RyYW/8raRj+51BTXgDcv2LFatavn7xX2jz3uVvz2GNPlS5jQtnnDTdr1vSu4ZY7ApbGYfPNu0uXMOHsc+cYwJJUiAEsSYUYwJJUiAEsSYUYwJJUiAEsSYUYwJJUiAEsSYUYwJJUiAEsSYUYwJJUiAEsSYUYwJJUiLejlDYBV155OcuWLWmk7ZUrHwegt3dmW9v39HTT17duXMecM2dn5s8/ZlxtTAYGsLQJWLZsCXnvfXRvNbPjba9b8zgAy59Y2/G2RzqeDGBpk9G91Uy23vnVHW/3qSXXAzTS9kjHk3PAklSMASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklTI5qUL0NS0ePEiAObNO7hwJdLIFi9exIwZ09h77wM73rYBrCJuueUmwADWxu+WW26ip6e7kQB2CkKSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCtm8ycYj4pPAkfXDazLzIxHxGuA8YBpwdWaeUW/7APAU8AzQBawFTsvMGwa191rgo5n56lGOeyjwXeA+oL8+1p3A8Zm5qt7mg8B7gXX1sb6YmRfW67qAs4G31vs/DZyVmd+v17fqw37Al4AZwCLgfZm5dlBdC4B1mXl2/Xgm8FVgF2A5cGRmPjxCv46rj7u0fo62BL4GfCoz1430nNT77wTcmpk71o/nAjdm5twh2/VnZld9vEMz87jR2pa04RobAdch9dfA/sB+wAER8Q7gy8CbgT2AAyPi9YN2Oywz98vMfakC8Mq6rc0i4lTgKqC7zRJurdvaPzN3r5d9vG7vbOBNVOGyF/Ba4OiIOLPe7kjgAOAldS3vBP5PROwQEdNG6MMVwMmZuRtVQJ5YH683Ii4BTh1S46eAmzNzD+Bi4J/b6Nd3Bj1HBwCvpHquRhQRhwE3ALPbOIakCdDkCPgh4NTMfAYgIn4D7Abcm5n318uuAN4OXDvM/jcAsyNiO6rQ2IMq0D4wxnpuBF4XEVsDHwb2zMzfAWTm8og4EfhpRJxbH6+baoS5NjPviYi3AX3Ay4brQ0TcBUzLzJ/Ux7sM+AfgC1RhfS9w7pCa3gAcXH//NeCCiOjJzL52OpSZT0bEx4HvRcRZmdk/wuZ/C/wNcEc7bTdt5crHWblyJQsXLihdyrj09HTT1zfqi49xW7p0CevXtTv22LitX7uGpUuXbDI/+6VLl7Dddts20nZjI+DM/PVAGEXEi6lGleupgnnAQ8ALWjQxnyroVtRtnQA8OpZaIuI5VCPe/wD2BJ7MzAeG1HsX1VTD7sDlVNMIyyPiBxFxerVJPgY8v0UfWi0nMy/PzM9QTXcM9sd96qmKJ4BZG9i9O4HtRtsvM4/IzDs3sG1JDWp0DhggIvYErqEada6lGgUP6KIK5QHfi4hngC2o5jmPZOxeGhG31d/3AD+mmj/di9b97gH666CdFxF7U01PHA58JCIOpPqjNXikOdCHVstH0jXM49H2GWrgmH/YwP0Y7lj1/PdII+mO6O2dSW/vTE4//czRN96IzZo1neXLVzV+nIULF3Dfst83fpyJsNnmW/HCOdtvMj/7hQsX0NPTzKuPpk/CzQO+AXwwM6+KiEOAHQdtMhv47aDHhw0dmY7DrZl56DA13QX0RERkZg5avidViGZEnAJcn5m/onrJfl5EfBU4AvhZiz482GL5SP6r3u7BiNgcmA6s2KBewj7AgwMnFzfQY0DvkGU71MslNazJk3BzgG8B8zPzqnrxT6tVsWtEdFNNMww3/9uYzHwK+DRwSUTsUNe6A9VJsM/W63uBBRGxTb1+BvAi4LZWfcjMJcCa+o8OwLsYvW/fA46pvz+K6oRcW/O/dV29wALggnb3GawO7Xsj4ohBi98DXDeW9iRtmCZHwKcBW1GNHgeWXQQcRzUq3ooqgL7eYA3DyszPRMTjwHURMTB1cFFmDgTZAqqQvj0i1lC9VP98Zv4I/ng52HB9OBq4uA7sXwCfG6WUM4HLIuLXwOP1/qN5Uz210k/18/sGsLCN/Vp5J/CFiDiLaurnduCkQeuPrk9ADjgnM88Zx/Ek1br6+xuf7tPUNBe4f8WK1axf/+e/YwNnwDeVecBWJnoOeOudR7wEfkyeWnI9QCNttzrerpvgHPApp3x8zG3MmjV96PkeYAJOwjUlIo4CPjbcuszcb2Kr6ZyI+BBw7DCrfpuZh42w36R8PqTJbJMN4My8Gri6dB2dlpnnA+ePYb9J+XxIk5n3gpCkQgxgSSrEAJakQgxgSSrEAJakQgxgSSrEAJakQgxgSSrEAJakQgxgSSrEAJakQgxgSSrEAJakQgxgSSrEAJakQgxgSSrEAJakQgxgSSrEAJakQgxgSSrEAJakQgxgSSpkk/1Yem3aDjrokNIlSG056KBDmDFjWiNtG8AqYt68g0uXILVl3ryDmTVrOsuXr+p4205BSFIhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhbX8qckS8DNgfuBQ4IDP/o7GqJGkKaGsEHBHHUQXvR4CZwLcj4sTmypKkya/dKYgPAK8AnsjMR4ADgA82VZQkTQXtBvC6zHxi4EFmLgPWNlOSJE0N7QbwoxGxH9APEBFHA482VZQkTQXtnoT7e+DrwIsi4iHgD8CbG6tKkqaAtgI4M++OiH2B3YDualH2NVqZJE1ybQVwREyjGvFuWy86OCLIzAsbq0zSs6xb8zhPLbm+kXaBRtpufbztJ+RYG7t2pyD+jerys/sHLesHDGBpAsyZs3Njba9cWcVAb+/Mtrbv6emmr2/dOI64faP92ZS0G8A7AX+Zmf1NFiNpePPnH1O6hD+aNWs6y5evKl3GpNDuVRB3AM9rshBJmmraHQH/X+DuiLgD+OPJt8x8VSNVSdIU0G4AfxI4B/jPBmuRpCml3QB+MjM/22glkjTFtBvA10XEScA3gacHFmam74aTpDFqN4BPAbYE/mXQsn6qN2VIksag3XfCTWu6EEmaatp9J9wWwBuAbYAuqpHvrpn5iQZrk6RJrd0piKuBXYAdgV8CLwdubKgmSZoS2n0jxn5UN2H/NtWN2Ofxp/tCSJLGoN0Afigz1wL3AHtl5q+B3ubKkqTJr90AXh0R84FfAUdGxN5U88GSpDFqN4BPopqG+BGwHlgE/K+GapKkKaHdy9DupfpEZICjmitHkqaOdi9DewXVvSC2pboMDYDM3KehuiRp0mv3MrT/DVwG/IL6gzklSePTbgCvzczzGq1EkqaYdk/C3Vlf+SBJ6pB2R8C7AD+PiCVUH0kPOAcsSePRbgC3vOdDRLy4vkpCkrQB2r0M7aYRVl8NvKQz5UjS1NHuHPBIukbfRJI0VCcC2MvSJGkMOhHAkqQxMIAlqRADWJIK6UQA39OBNiRpymn3ZjzbAAuB3YG3A/8InJqZqzPzfzRYnzSlXXnl5SxbtqSjba5c+TgAvb0zx7R/T083fX3rRt1uzpydmT//mDEdY6po940YnwMeAp4HrAFmAF8E5jdUlyRg2bIlPHDf3czept3/qqN7bPVaALb8w+/HtP+aNrZ5uD6GRtbuT3X/zHx3RByWmU9FxNHAnU0WJqkye5vNOX6fzn0E46W3PwrQ0TZbHUMja3cOeOjrjW6qT8aQJI1RuwG8KCIWAtMi4nXAN4EbmitLkia/dgP4dGA1sBL4NHA78OGmipKkqaDdm/H0AQvqL0lSB4wYwBFxByPc68H7AUvS2I02Aj55QqqQpClotDng39X3Al7V4kuSNEajjYDPBd4A/AxYyrPv/dtP9VFFkqQxGC2Ad4+I5wN3AYdSBbD3/5WkDhgtgH8ILKu/Xz5o+UAQdzdRlCRNBSMGcGa+H3h/RCzKzIMnqCZJmhLaeiOG4StJnecN2SWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgDVpLF68iMWLF5UuQ1PIeH/nRvtMOGmTccstNwEwb54f4KKJMd7fOUfAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklTI5k02HhGfBI6sH16TmR+JiNcA5wHTgKsz84x62weAp4BngC5gLXBaZt4wqL3XAh/NzFePctxDge8C9wH99bHuBI7PzFX1Nh8E3gusq4/1xcy8sF7XBZwNvLXe/2ngrMz8fr2+VR/2A74EzAAWAe/LzLUR8ULgCmAHIIGjM3N1RNzKn34G04AXATtl5u9a9Ou4+rhL6+doS+BrwKcyc91Iz0m9/07ArZm5Y/14LnBjZs4dsl1/ZnbVxzs0M48brW1JG66xAK5D6q+B/alC7PsR8Q5gIXAIsAy4JiJen5nX1rsdlpkP1PsfDlwJ7BgRmwEfAj4O3NFmCbdm5qGD6vl6vf/HIuJs4GCqcPldRMwCvhUR22XmAqo/GgcAL6kDdDdgcUTsCawCvtyiD1cAJ2TmTyLiEuBE4AvAhcCFmXlVRJwJnAmcnpkvHVTf5cBXWoXvIN8ZCMSIeA7wbao/FmeOtFNEHAb8EzB7lPY3WStXPs7KlStZuHDBhB2zp6ebvr5R//aN2dKlS9ia9Y2135TVz6znkaVLJvRn0aRWP+elS5fQ29s75nabnIJ4CDg1M5/JzD7gN8BuwL2ZeX9mrqUKrLe32P8GYHZEbAfsUX+dOI56bgT2ioitgQ8D7x4Iu8xcXrf9kXr9bKCbaoRJZt4DvA3oA142XB8iYmdgWmb+pD7eZfXyHqqw//rg5YMLi4hXA/tS/XFqW2Y+SfVH5f31qH0kfwv8zYa0L6lZjY2AM/PXA99HxIupRpX/QhXMAx4CXtCiiflUQbcCWAGcUE8tbLB6pPgmqhDeE3hyYKQ9qN67IuJpYHfg8rre5RFxM/BjqtHpYxHx/BZ9aLV8e+CJOqxb9fkfgE+0M40wjDuB7YBZwCOtNsrMIwAiYgyH2DT09s6kt3cmp58+4ouBjpo1azrLl69qrP2FCxew5uH7Gmu/KdtssRnbz955Qn8WTWr1cx7vCL/ROWCA+mX7NVSjzrVUo+ABXfCs11ffi4hngC2o5jmPZOxeGhG31d/3UIXoecBetO53D9CfmY8B8yJib+C1wOFUo+MDqV419A/Th3aXw6A+18/P9pn53Q3tYG2g7T+MYd8/e21bj6SH1iupAU2fhJsHfAP4YD3/eQiw46BNZgO/HfT4sKEj03F41hzwoJruAnoiIjIzBy3fkyosMyJOAa7PzF9RzTmfFxFfBY4AftaiDw+2WP4I0BsR3fUId0ee3ee3AFePo5/7AA8OnFzcQI8BQyewdqiXS2pYY3PAETEH+BYwPzOvqhf/tFoVu0ZEN9U0w7UtmmhEZj4FfBq4JCJ2qGvdAbgY+Gy9vhdYEBHb1OtnUF2hcFurPmTmEmBN/UcH4F318j7gZuCoevkxPLvPr6jXb7CI6AUWABeMZf86tO+NiCMGLX4PcN1Y2pO0YZocAZ8GbEU1ehxYdhFwHNWoeCvge/zp5NSEyczPRMTjwHX1FRb9wEWZORBkC6hC+vaIWEP1Uv3zmfkj+OPlYMP14Wjg4jqwfwF8rl7+d8BXIuIMqqmVdwwqZxeq0XO73lRPrfRT/fy+wQaevBvincAXIuIsqqmf24GTBq0/OiLeNujxOZl5zjiOJ6nW1d/vdJ8aMRe4f8WK1axfPzG/YwMnRCbjSbjj99m2Y21eevujAB1tc7hjbDV71ylzEm60fs6aNX3Yq5QaPwnXlIg4CvjYcOsyc7+JraZzIuJDwLHDrPptZh42wn6T8vmQJrNNNoAz82rGd/Jqo5SZ5wPnj2G/Sfl8SJOZ94KQpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqZJP9WHppqIMOOqR0CZpixvs7ZwBr0pg37+DSJWiKGe/vnFMQklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklTI5qULkDSyh1ev5dLbH+1oe0BH2xzuGHMba33yMICljdicOTt3vM3nrnwcgK16Z45p/56ebvr61o24zVyaqX2yMYCljdj8+ceULuHPzJo1neXLV5UuY1JwDliSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQb8ajpnQDbLZZV+k6GjcV+jiUfd5gc4EHgbWDF3b19/ePp1GplYOAm0sXIW1E/gJ4YPACA1hN2RI4EHgIGPnmsdLU4AhYkjYWnoSTpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxHtBSG2KiHcCH6sfXpuZp0XEa4DzgGnA1Zl5RrECOygiZgD/DrwxMx9o1c+I2A/4EjADWAS8LzPXDt/qxm2YPr8H+ADQD9wKvDczn+lknx0BS22IiK2BzwGHAPsCr4yIw4EvA28G9gAOjIjXl6uyMyLi5cAtwG7142m07ucVwMmZuRvQBZw48RWP3zB93g34MPBXwD5UWXlSvXnH+mwAS+3ppvr/8hygp/56Arg3M++vR0BXAG8vV2LHnEgVNr+tH7+MYfoZETsD0zLzJ/V2l7Hp9n9on58G/i4zn8jMfuAO4IWd7rNTEFIbMnNVRJwJ3A08BdwEPJ/qZkMDHgJeUKC8jsrMEwAiYmBRq35Omv4P7XNmLgGW1MtmAScDx9HhPjsCltoQEfsA7wZ2pvpPuI7q5ergu1l1AesnvrrGbcbw/Wy1fNKIiJ2A64FLMvNGOtxnA1hqz+uA6zPzkcx8muql56HAjoO2mc2fXsJOJg8yfD9bLZ8UImJ3qpNyX8nMBfXijvbZAJba8yvgNRHxnIjoAg4HfgpEROwaEd3AfODakkU2ZNh+1i/T10TEvHq7dzFJ+h8R04EfAmdk5rkDyzvdZwNYakNm/hD4GvBz4Haqk3BnU80LfgO4i2p++OtlKmxOZq6hdT+PBs6PiLuBbaiuFJkMTgCeB5waEbfVX/+zXtexPntDdkkqxBGwJBViAEtSIQawJBViAEtSIQawJBViAEvjFBEvjYgRLz+LiLMi4s1NHjsiDoyIizp9DDXHe0FI45SZtwJvG2WzV1FdQ9vksfdkE70Xw1TldcDSOEXEocDnqe4Z+wSwNzCH6g0bxwDHAguB5cApwDX140Oo7rL2S+ADmflERDxA9TbnVwMvBC7PzDMjYhvgUuDFVPce+DnwXuDg+tivBxYDvcA3gbXAI5n5ibrGdwJHZOZbR+jHZVQ3Gtqb6k0I3wFWUL3rbzZwQmb+OCK2GKH+NwIfB7YAdqB6G++Z9XP0aeD/AXtRvZHlvZm5eEOe68nGKQipsw4A/jvVfXPnAm/PzAuowvnDmfmvwEepAvKAzNyX6l4CnxnUxjaZ+Uqqe9GeFhF/AbwVmJ6Z+wEH1tvtMrBDZi4DzgJuzszjgQuA4yNi4FXue4B2pideQjVaPxg4FVidmX8F/HNdN63qr9+ifSpwbGa+FPhvwMciYvt6v5cD52bm/lR/TM5po55JzQCWOuv7mfl0ZvZR3UN222G2eSPVzc1/GRG3AW8B/nLQ+m8DZOZ/AY/UbdwC7BkRN1IF4D9l5n2tisjM24D7gTdExB5Ud3D7YRv1/1tm9mXmw8CTwPfr5f85qC/D1l/fN/dw4ICI+CTVJ2h0Ud1DGWBJXRfALxj+uZlSnAOWOusPg77vpwqgobqBv8/MawHq6YWtRmojM++PiF2p7sD2KuC6+iNzVo1QywVUt9C8B/hiHZCjeXrI475264+I51BNR/wrcDPVp2i8hT89B+08N1OKASxNjLVU854APwBOjojr6+UXA6sZ4aNtIuL9wCuBozPzBxHxPKrpgptaHAOqG+Z8huojdQ6kc1rVfwHV56SdUX922ruALakCW8NwCkKaGN8B/jEijgUWAA9QjRbvohoJnjrK/pdTBdldEfFzqpNtQ+/C9RNgl4j4JkBmPkMVwv+emb/vUD+gdf23A98F7o6I31BNR9wF7NrBY08qXgUhTVL1lMAi4KRBn2GmjYhTENIkFBGvo7p/8YUD4RvVB55d3WKXzMyjJqo+VRwBS1IhzgFLUiEGsCQVYgBLUiEGsCQVYgBLUiH/H6cNuMc6vlT5AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.catplot(data=df, x=\"intensity_mean\", y=\"file_name\", kind=\"box\")" ] }, { "cell_type": "markdown", "id": "5da21648-38e7-4e1c-90f5-e1f2d0fa83d2", "metadata": {}, "source": [ "There are other kinds available, like a `bar` graph." ] }, { "cell_type": "code", "execution_count": 19, "id": "e95df95a-b4e0-4ca5-b94d-0512fb09058f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVwAAAFcCAYAAACEFgYsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfzklEQVR4nO3de1yUZf7/8TcygPCF3EQmrMg0z+VhN098bUXdXUQRD+TjkWlpth4qQ5fM1vCUra5mrKi5tmlWu2a7qeGJJdKVtJSysoM/S80U8LB+ccQjKAjD/fvDR7OxngZkLnB4Pf+Bue7D9bmni7dX98xc42NZliUAgMfVqe4CAKC2IHABwBACFwAMIXABwBACFwAMIXABwBBbdRdQVfLzC1RWxjvcAFSvsLCQq25jhgsAhhC4AGAIgQsAhhC4AGAIgQsAhhC4AGAIgQsAhhC4AGAIgQsAhhC4AGAIgQsAhng0cAsKCtS3b18dOXJEkpSVlaW4uDhFR0crJSXFtd+ePXsUHx+vXr16afLkySotLfVkWQBQLTwWuN98840efvhh5eTkSJKKioqUlJSkxYsXKz09Xbt379bWrVslSRMnTtS0adP0wQcfyLIsrVy50lNl1UpffvmFZsyYrC+//KK6SwFqNY8F7sqVKzV9+nTZ7XZJ0q5du9SoUSNFRETIZrMpLi5OGRkZOnr0qIqKitS+fXtJUnx8vDIyMjxVVq20atU72rPnW61a9U51lwLUah5bnnHWrFnlHh8/flxhYWGux3a7XXl5eZe1h4WFKS8vz1Nl1UoXLhSV+wmgehhbD7esrEw+Pj6ux5ZlycfH56rtFRUaGlwldXojX18f189rrdUJwLOMBW54eLgcDofrscPhkN1uv6z9xIkTrtsQFcEC5FfndFqunw7HuWquBvBuNWIB8nbt2ik7O1u5ublyOp1KS0tTt27ddMcddyggIEA7d+6UJK1bt07dunUzVRYAN/Hi640zNsMNCAjQnDlzlJCQoOLiYkVFRSkmJkaSlJycrClTpqigoED33nuvhg0bZqosAG5ateodZWcfVFHRBf3iFx2qu5ybkscDNzMz0/V7ZGSk1q9ff9k+LVu21OrVqz1dCoAbwIuvN45PmgGAIQQuABhC4AKAIQQuABhi7F0KNVXILXVVN8CvusvwqNr2wYei4hKdO8sLO6h5an3g1g3w05DnVlR3GR514sSlDzv834lzXn+tkvTO3KE6JwIXNU+tD1ygKtxaz182/4DqLsOjatv/KZVeLNapMxer9JwELlAFbP4B2jl3ZHWX4VHFp/JcP739WiXp/udel1S1gcuLZgBgCIELAIYQuABgCIELAIYQuABgCIELAIYQuADcEmCrU+4nKo5nrhbw8fUr9xOojOimt6rJrXUV3fTW6i7lpsUHH2qB4Nt/ocL/+3/6n/A21V0KbmKtwoLUKiyousu4qRG4tUBAvQgF1Iuo7jKAWo9bCgBgCIELAIYQuABgCIELAIYQuABgCIELAIYQuABgCIELAIYQuABgCIELAIYQuABgCIELAIYQuABgCIELAIYQuABgCIELAIYQuABgCIELAIYQuABgCIELAIYQuABgCIELAIYQuABgCIELAIYQuABgCIELAIYQuABgCIELAIYQuABgCIELAIZUS+CuW7dOsbGxio2N1UsvvSRJysrKUlxcnKKjo5WSklIdZQGARxkP3AsXLmjWrFlavny51q1bpy+++EKZmZlKSkrS4sWLlZ6ert27d2vr1q2mSwMAjzIeuE6nU2VlZbpw4YJKS0tVWlqq4OBgNWrUSBEREbLZbIqLi1NGRobp0gDAo2ymOwwODtb48ePVu3dvBQYGqmPHjjp+/LjCwsJc+9jtduXl5VXovKGhwVVdKm5iYWEh1V0CvEBVjyPjgbt371699957+vDDDxUSEqJnn31WOTk58vHxce1jWVa5x+7Izy9QWZlV4Xr4w/RODsc5o/0xjrxTZcbRtcaC8VsK27ZtU2RkpEJDQ+Xv76/4+Hjt2LFDDofDtY/D4ZDdbjddGgB4lPHAbdmypbKysnT+/HlZlqXMzEy1a9dO2dnZys3NldPpVFpamrp162a6NADwKOO3FB544AF99913io+Pl5+fn9q0aaOEhAR17dpVCQkJKi4uVlRUlGJiYkyXBgAeZTxwJWn06NEaPXp0ubbIyEitX7++OsoBACP4pBkAGELgAoAhBC4AGELgAoAhBC4AGELgAoAhBC4AGELgAoAhBC4AGELgAoAhBC4AGELgAoAhBC4AGELgAoAhBC4AGELgAoAhBC4AGELgAoAhBC4AGELgAoAhBC4AGELgAoAhBC4AGELgAoAhBC4AGELgAoAhBC4AGELgAoAhBC4AGELgAoAhBC4AGELgAoAhBC4AGELgAoAhBC4AGGJzZ6evvvpK8+bN05kzZ2RZlqt9w4YNHisMALyNW4E7bdo0xcfHq3Xr1vLx8fF0TQDgldwKXJvNphEjRni6FgDwam7dw23WrJn27dvn6VoAwKu5NcM9fPiwHnzwQd1+++0KCAhwtXMPFwDc51bgJiYmeroOAPB6bgVup06ddPr0aV24cEGWZcnpdOrQoUOerg0AvIpbgbtgwQItWbJEkuTr66uSkhI1bdqUWwoAUAFuvWi2bt06ffjhh+rVq5c2btyo2bNnq2nTpp6uDQC8iluBW79+fdntdjVp0kR79+7VgAED9P3333u6NgDwKm4Frs1m06FDh9SkSRN98cUXKi0tVXFxsadrAwCv4lbgjhkzRlOnTlX37t21adMmde/eXV26dPF0bQDgVdx60axHjx7q0aOHJGnt2rXKzc1VixYtPFoYAHgbt2a4hYWFmjFjhoYPH67i4mK98847On/+fKU7zczMVHx8vHr37q2ZM2dKkrKyshQXF6fo6GilpKRU+twAUFO5FbgzZ87ULbfcovz8fAUEBKigoEDTpk2rVIeHDx/W9OnTtXjxYq1fv17fffedtm7dqqSkJC1evFjp6enavXu3tm7dWqnzA0BN5Vbg7tmzR4mJibLZbAoMDFRycrL27NlTqQ43bdqkPn36KDw8XH5+fkpJSVFgYKAaNWqkiIgI2Ww2xcXFKSMjo1LnB4Cayq17uHXqlM9lp9N5WZu7cnNz5efnpyeeeELHjh1T9+7d1axZM4WFhbn2sdvtysvLq9B5Q0ODK1UPvFNYWEh1lwAvUNXjyK3A7dixo15++WUVFRXp448/1ooVK9S5c+dKdeh0OvXFF19o+fLlCgoK0pNPPqm6deuWW2fXsqwKr7ubn1+gsjLr+jv+F/4wvZPDcc5of4wj71SZcXStseDWNPXZZ59VUFCQQkJClJKSohYtWui5556rcCGS1KBBA0VGRqp+/fqqW7eufv3rXysrK0sOh8O1j8PhkN1ur9T5AaCmcitw/fz8NHbsWK1atUqpqalKTEwst0xjRfTo0UPbtm3T2bNn5XQ69fHHHysmJkbZ2dnKzc2V0+lUWlqaunXrVqnzA0BN5dYthR07dmjJkiU6c+ZMufbVq1dXuMN27dpp5MiRGjJkiEpKStS1a1c9/PDDatKkiRISElRcXKyoqCjFxMRU+NwAUJO5FbhTpkzRo48+qrvuuqtKOh00aJAGDRpUri0yMlLr16+vkvMDQE3kVuCGhoZq2LBhnq4FALyaW4Hbs2dPrVixQr/85S9ls/3nkNtvv91jhQGAt3ErcE+dOqV58+YpMDDQ1ebj46Mvv/zSY4UBgLdxK3A//PBDbdu2TQ0aNPB0PQDgtdx6W1hoaKjq16/v6VoAwKu5NcNt3ry5hgwZoh49esjf39/VPmLECI8VBgDexq3ALSoqUuPGjZWTk+PhcgDAe7kVuLNnz77qtmeeeUbz5s2rsoIAwFtVbsmvn8jOzq6KOgDA691w4AIA3EPgAoAhBC4AGELgAoAhNxy4llXxb1kAgNrIrcBNSEhQVlbWFbfxleYA4B63Avc3v/mNFi9erF69emnZsmU6ffq0a1vjxo09VRsAeBW3Ardfv356++23tXjxYuXn52vQoEGaOHGidu3a5en6AMBruH0Pt6ysTLm5ucrJyZHT6VRoaKheeOEFLVy40JP1AYDXcOujvSkpKUpNTVVERISGDBmiBQsWyM/PT+fPn1ePHj00btw4T9cJADc9twL35MmTWrp0qVq2bFmuPSgoSH/60588UhgAeBu3bik4nc7LwvbHWe0DDzxQ9VUBgBe65gx3+vTpysvL086dO3Xy5ElXe2lpqQ4fPuzx4gDAm1wzcAcNGqT9+/dr37596tWrl6vd19dX7du393RtAOBVrhm4bdq0UZs2bdS1a1fddtttpmoCAK90zcAdP368FixYoJEjR15x+4YNGzxSFAB4o2sG7qhRoyRJU6dONVIMAHiza75L4b777pMkderUSQ0bNlSnTp10/vx5ff7552rVqpWRAgHAW7j1trBp06Zp6dKlOnDggKZMmaIjR44oKSnJ07UBgFdxK3B3796tF154QZs2bdLAgQM1e/ZsHT161NO1AYBXcStwLctSnTp1tH37dnXp0kXSpa9OBwC4z63AveuuuzRq1CgdOXJEnTp10oQJE9SiRQtP1wYAXsWttRRmz56tTZs26f7775efn586dOigAQMGeLg0APAubs1wg4KC1KFDB509e1bffvut2rZtq4MHD3q6NgDwKm7NcBcsWKA33nhDoaGhrjYfHx9t3rzZY4UBgLdxK3DXrVunjRs38vFeALgBbt1SaNiwIWELADfIrRluZGSk5s6dq1/96leqW7euq/3ee+/1WGEA4G3cCtzU1FRJUkZGhquNe7gAUDFuBW5mZqan6wAAr+fWPdzCwkK9+OKLGj58uE6fPq1p06apsLDQ07UBgFdxK3BnzpypkJAQ5efnKyAgQAUFBZo2bZqnawMAr+JW4O7Zs0eJiYmy2WwKDAxUcnKy9uzZ4+naAMCruBW4deqU383pdF7WBgC4NrdeNOvYsaNefvllFRUV6eOPP9aKFSvUqVMnT9cGAF7FrWnqs88+q6CgIIWEhCglJUUtWrTQpEmTPF0bAHgVt2a4W7du1dixYzV27FhX29q1a1kxDAAq4JqBm5mZqdLSUs2dO1eWZcmyLElSaWmpXnnlFQIXACrgmoG7Z88effrpp8rPz9ff/va3/xxks+mxxx7zdG0A4FWuGbg/3kZYsWKFhg4dWuWdv/TSSzp16pTmzJmjrKwszZ49W8XFxerdu7cSExOrvD8AqE5u3cMdOHCg1qxZozNnzrhuK0jSiBEjKt3xJ598ojVr1qh79+4qKipSUlKSli9froYNG2rMmDHaunWroqKiKn1+AKhp3ArcSZMm6ciRI2revLl8fHxuuNPTp08rJSVFTzzxhPbu3atdu3apUaNGioiIkCTFxcUpIyODwAXgVdwK3L179yo9PV02m1u7X9e0adOUmJioY8eOSZKOHz+usLAw13a73a68vLwKnTM0NLhKaoN3CAsLqe4S4AWqehy5laDh4eFV1uGqVavUsGFDRUZGupZ9LCsrKzdztiyrwjPp/PwClZVZ19/xv/CH6Z0cjnNG+2MceafKjKNrjQW3Ard58+YaNmyYfvnLX5ZbgLwy93DT09PlcDjUv39/nTlzRufPn9fRo0fl6+vr2sfhcMhut1f43ABQk7kVuIWFhWrUqJEOHTp0wx2++eabrt9TU1P12WefacaMGYqOjlZubq7uvPNOpaWl6cEHH7zhvgCgJrlm4I4fP14LFizQ7t27PVpEQECA5syZo4SEBBUXFysqKkoxMTEe7RMATLtm4I4aNUqSNHXqVI90Hh8fr/j4eEmXvjdt/fr1HukHAGqCawbufffdJ0msDAYAVYBFbQHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAkGoJ3EWLFik2NlaxsbGaO3euJCkrK0txcXGKjo5WSkpKdZQFAB5lPHCzsrK0bds2rVmzRmvXrtW3336rtLQ0JSUlafHixUpPT9fu3bu1detW06UBgEcZD9ywsDBNmjRJ/v7+8vPz0z333KOcnBw1atRIERERstlsiouLU0ZGhunSAMCjbKY7bNasmev3nJwcvf/++3rkkUcUFhbmarfb7crLy6vQeUNDg6usRtz8wsJCqrsEeIGqHkfGA/dH+/fv15gxY/Tcc8/J19dXOTk5rm2WZcnHx6dC58vPL1BZmVXhOvjD9E4Oxzmj/TGOvFNlxtG1xkK1vGi2c+dOPfbYY5owYYIGDhyo8PBwORwO13aHwyG73V4dpQGAxxgP3GPHjmns2LFKTk5WbGysJKldu3bKzs5Wbm6unE6n0tLS1K1bN9OlAYBHGb+lsGzZMhUXF2vOnDmutsGDB2vOnDlKSEhQcXGxoqKiFBMTY7o0APAo44E7ZcoUTZky5Yrb1q9fb7gaADCHT5oBgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYQuACgCEELgAYUqMCd8OGDerTp4+io6O1YsWK6i4HAKqUrboL+FFeXp5SUlKUmpoqf39/DR48WJ07d1bTpk2ruzQAqBI1JnCzsrLUpUsX/exnP5Mk9erVSxkZGXr66afdOr5OHZ9K993g1v+p9LGomW5kPFSW/y2hxvuEZ1X1OKoxgXv8+HGFhYW5Htvtdu3atcvt42+9gdBc+PyASh+Lmik0NNh4n22eeMl4n/Csqh5HNeYebllZmXx8/vOviWVZ5R4DwM2uxgRueHi4HA6H67HD4ZDdbq/GigCgatWYwP3f//1fffLJJzp58qQuXLigjRs3qlu3btVdFgBUmRpzD/e2225TYmKihg0bppKSEg0aNEht27at7rIAoMr4WJZlVXcRAFAb1JhbCgDg7QhcADCEwAUAQwhcADCEwAUAQ2p94C5atEixsbGKjY3V3LlzJV1a1yEuLk7R0dFKSUlx7duzZ0/16dNH/fv3V79+/RQfH69PP/203Pm2b9+u4cOHX7ffHTt26Oc//7n69++vAQMGKCYmRuPGjVNBQYFrn7feeku9e/dW37591b9//3IrqFmWpYULFyouLk79+vXToEGD9NFHH7m2X+0a9uzZo/j4ePXq1UuTJ09WaWlpubrmz5+vV155xfX47NmzGj16tHr37q2hQ4eW+3DKlaSmpqpTp06u5ygmJkaLFi2S0+m87nMiXVrE6IEHHnA9PnLkiHr27HnZfi1atHD1N2nSJLfO7UmMo0vj6N///reGDh2qmJgYPfnkkyosLJQkxcfHq3///urfv7969eql1q1b68SJE1e9Lq8dR1Yttn37duuhhx6yiouLrYsXL1rDhg2zNmzYYEVFRVmHDh2ySkpKrMcff9zasmWLZVmW1aNHD+vw4cOu4zdv3mx17drVsizLcjqd1rJly6xOnTpZjzzyyHX7/vTTTy/bLyEhwUpOTrYsy7IWLlxoPfroo5bD4bAsy7Ly8/Othx56yFq0aJFlWZb1z3/+0xo9erRVUlJiWZZlHTx40OrcubN14sQJ68KFC1e9htjYWOurr76yLMuynn/+eWvFihWWZVnW2bNnreeff95q27attXDhQldNM2bMsF577TXLsixrzZo11vjx4695Xe+99571+9//3vW4sLDQGj58uJWSknLd52TLli1WdHS01bx5c1fb4cOHrR49ely274/7/Hd/1YFx9J9xNHr0aCstLc2yLMtatGiRNXfu3MtqnjhxovXqq69e87q8dRzV6hluWFiYJk2aJH9/f/n5+emee+5RTk6OGjVqpIiICNlsNsXFxSkjI+OKx3fu3FkOh0OnTp3SgQMHdODAAf3hD3+odD2dOnXS/v37deHCBS1btkx//OMf1aBBA0lS/fr1NXPmTL3++uu6cOGCHA6HnE6nLl68KElq3LixFi5cKJvNpl27dl3xGo4ePaqioiK1b99e0qVZx4/XtnnzZt19990aMWJEuZq2bNmiuLg4SVLfvn310UcfqaSkxO1rCgoK0jPPPKO///3vsq7zlu/Vq1eXm13fLBhHl8ZRSUmJPv/8c/Xq1atc+0998skn2rt3r0aNGlWha/KWcVSrA7dZs2auQZOTk6P3339fPj4+l61alpeXd8Xj09LSdPfdd+vWW29Vs2bNNGvWLNWrV69StZw/f16ZmZlq37699u/fr8DAQN15553l9mnatKn8/f118OBBDRgwQAUFBYqMjNRvf/tbLVmyRI0bN1a9evWuuPJaXl7eZe1hYWGuaxswYIBGjx4tX1/fcn3+9Bibzabg4GCdPHmyQtfWrFkznT59+rrHvfLKK2revHmFzl0TMI4ujaNTp04pODhYNputXPtPLVy4UImJiZeNM3d4wziqMR/trU779+/XmDFj9Nxzz8nX11c5OTmubdZ/rVo2evRo+fn5qaSkRA0bNtT8+fMr3e/u3bvVv39/SVJpaam6dOmiESNG6Pvvv7/qvarS0lL5+PioXr16+sc//qF9+/YpKytLmZmZWrZsmVavXn3VldeqYkU2y7JUp07F/p3+sY+AgIAKHSfpin1Vpm4Tavs4utJ/l58+3r9/v06dOqUePXpU6jq9YRzV+sDduXOnxo0bp6SkJMXGxuqzzz675qplS5YsuWzGUFn33Xefli9ffll706ZNVVJSooMHD6pJkyau9v3796usrEyNGzfWm2++qcjISLVs2VItWrTQiBEjNGHCBH3wwQdq27btFa/hv1dkO3HixHVXZLPb7Tpx4oTCw8NVWlqqwsJC1yLx7tq3b5/Cw8MVHFzxtUVvueUWnTt3rlxbfn5+pWeAnsI4sqt+/fo6d+6cnE6nfH19L7vmf/3rX+rTp0+lr9MbxlGtvqVw7NgxjR07VsnJyYqNjZUktWvXTtnZ2crNzZXT6VRaWprxVcsCAwP15JNPavLkycrPz5d0aXBMnTpVI0eOVGBgoM6dO6f58+e7XgUuKCjQ4cOH1apVq6tewx133KGAgADt3LlTkrRu3brrXltUVJTWrl0rSUpPT1eHDh3k5+fn9rWcO3dOCxYs0NChQyvxTEjBwcFq1KiRPvjgA1fbu+++q8jIyEqdzxMYR5fGkZ+fnzp06KD09HRJ0tq1a8td89dff60OHTpU6lq8ZRzV6hnusmXLVFxcrDlz5rjaBg8erDlz5ighIUHFxcWKiopSTEyM8dpGjx6tkJAQPfbYY67/9Rk8eLBrwD311FNKSUlRv379FBAQoDp16mjo0KHq2rWrJF31GpKTkzVlyhQVFBTo3nvv1bBhw65Zx/jx4zVp0iTFxsYqJCREycnJ1609MzNT/fv3l4+Pj5xOp6Kjoyv8IslPvfzyy3rhhRf05z//WSUlJWrRooWmTZvm2r5hw4Zyf0hjxozRE088Uen+Kopx9J9xNH36dE2aNEmvvvqqGjZsqHnz5rlqOXz4sG677Ta3a/fGccRqYQBgSK2e4Xpaenq6XnvttStuW7duneFqqs5bb72lNWvWXNZut9u1dOnSqx7nrc+Hp3nr81YbxxEzXAAwpFa/aAYAJhG4AGAIgQsAhhC4uClMnz5dPXv21MiRI/XDDz9ox44d6tu3b3WXBVQI71LATeHdd9/Vli1bFB4eLkmuN/IDNxMCFzXekCFDZFmWRo0apR9++EErV64st/3ixYtKTk7W559/LqfTqdatW2vKlCnX/Ajojh07lJKSooiICO3fv1+lpaWaMWOG7r//fmVnZ+vFF19UYWGhHA6HWrZsqfnz5ysgIEBt2rTRiBEjlJWVpfPnz+vpp59WRkaGvv/+e9ntdv3lL39RUFCQDhw4oFmzZun06dNyOp169NFHNWjQIE8/VajhuKWAGu+dd96RJP31r39Vw4YNL9u+ZMkS+fr6KjU1VevXr5fdbnfrE3G7du3S448/rrVr1yo+Pt61wPbKlSs1YMAArVy5Uhs3btSRI0e0ZcsWSZfCvUGDBlq9erUGDBigKVOmaPLkyUpPT1dBQYE2b96s0tJSjRs3ThMmTFBqaqrefvttvfHGG/r666+r7DnBzYkZLm56W7Zs0blz55SVlSVJKikpUWho6HWPu/3229WqVStJUuvWrV1vwp84caK2b9+upUuXKicnR8ePH9f58+ddx/243utdd92l5s2buz6ueuedd+rMmTPKycnRoUOHlJSU5DqmqKhI3333nWsZR9ROBC5uemVlZUpKSlJUVJQkqbCwUMXFxdc9rm7duq7ff1xeUJKeeeYZOZ1O9e7dW927d9exY8fKLXr908V7rrSQj9PpVEhISLlPPZ04cUIhISEVvzh4FW4p4Kb3wAMPaMWKFbp48aLKyso0derUcoumVNS2bds0duxY11KC33zzjdvfpSVd+taEunXrugL32LFj6tu3r3bv3l3pmuAdmOHipvfUU0/ppZde0sCBA+V0OtWqVasb+kLAxMREjR07VkFBQQoODlbHjh116NAht4/39/fX4sWLNWvWLL3++usqLS3V+PHjdf/991e6JngH1lIAAEOY4cJr/e53v1N2dvYVt6WkpJT7FgTABGa4AGAIL5oBgCEELgAYQuACgCEELgAYQuACgCH/H1tboKgxlaZiAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.catplot(data=df, x=\"file_name\", y=\"intensity_mean\", kind=\"bar\")" ] }, { "cell_type": "markdown", "id": "1e2c1579-8df5-4e70-bd10-8a6095f2d564", "metadata": {}, "source": [ "## Histograms and Distribution Plots" ] }, { "cell_type": "markdown", "id": "e05666b2-84b9-4c07-a531-17af8496c28d", "metadata": {}, "source": [ "The axes-level function for plotting histograms is `histplot`." ] }, { "cell_type": "code", "execution_count": 20, "id": "467d56e3-4e6e-4e01-b67b-c0319734a7e0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEJCAYAAACKWmBmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAvoUlEQVR4nO3deVhUBdsG8HsWBmQxAwcXXCu3zJ3KrShMEYVMXCJ3cc3dCkVASVwwcnkzd3Mp0RQXNH3VMpfSMD+0UsnyNRVFUURAZNhn5nx/oBMIHAeYjfH+XZfXxZz1ec7M+MzZniMRBEEAERFRGaTmDoCIiCwbCwUREYlioSAiIlEsFEREJIqFgoiIRLFQEBGRKBYKIiISJTd3AMaQnp4FrbZq3R7i4uKI1FSVucMwGGvLB7C+nJiP5TNVTlKpBM8/71DmeKssFFqtUOUKBYAqGbMYa8sHsL6cmI/ls4SceOiJiIhEsVAQEZEoqzz0RGTpBEFAenoK8vNzAZjn0MK9e1JotVqzrNsYrC0fwPA5yWRyODrWQLVqZZ+PKA0LBZEZqFQZkEgkqFWrHiQS8+zYy+VSqNXW8x+rteUDGDYnQRBQUJCPBw9SAKBcxYKHnojMICdHBSenGmYrEvTskUgkUChsUaOGEirVg3LNy08pkRlotRrIZNyhJ9OzsVFAo1GXax4WCiIzkUgk5g6BnkEV+dzxJw2RngStBkqlk0GWde+eFHJ5xX6nCYIAjcb819bTs4OFgkhPEqkMtw59Y5BlaZTNkZ+RWqF5Fc+5wFxXSulj8eIInDlzGg0aNMKkSdOQnp6GZcsisWVLtLlDowoyaqFQqVTw9/fHmjVrcPXqVSxdulQ3Ljk5GW3atMHatWuLzRMTE4MlS5bAxcUFAPDWW29h+vTpxgyTiAxo37492L37AFxdawEA0tPTzBwRVZbRCsX58+cRGhqKhIQEAICHhwc8PDwAACkpKfjggw8wa9asEvPFx8cjKCgIPj4+xgqNiIxkwoTREAQBn3wyBQkJ17Fu3eZi4wsKCrB69XL88cdv0Gi0aNq0GaZN+wQODo5lLvO3385i/fpVqFvXDdeuXYVarUZgYDBat26LmzdvYOnSz5CdnY20tPt46aWmmDs3Ara2tvD07Iz33x+Ms2fPICcnByNHjsXx4z/i2rV/ULOmEp99tgzVqlVDQsJ1fPHFYmRkZECr1aJ///fh49PHyFuqajHayezo6GiEhYXB1dW1xLjIyEj4+/ujUaNGJcZdvHgRMTEx8PX1xSeffIKMjAxjhUhEBrZq1VcAgOXL1+r2KIqKitoMmUyODRui8PXX36JmTSVWr17x1OVeuvQn/P2HYNOmbejV612sW7cKALB//154e/tg3brN2LVrH+7cScLp06cAAPn5+XB2dsH69d+gZ8/e+Oyz+Zg69WNERe2ESqXCyZM/Qa1WIzR0JsaPn4yNG6OwYsU6bN8ehfj4iwbcKlWf0fYoFixYUOrwhIQE/N///V+Z45VKJQICAtC+fXssXboU4eHhWLJkibHCJCITio09icxMFeLizgAA1OoC1Kjx/FPnq1WrNpo0aQYAaNasOQ4d2g8A+PDDyYiLO4OtW7/GrVuJuH8/BTk5Obr53nrLEwDg5lYPL774IpTKwh+udevWRWZmBhITbyIp6RYiIsJ18+Tl5eHKlct45ZVWhknaCpj8ZPaOHTswaNAgKBSKUsevXLlS9/fo0aPRvXv3cq/DxaXs3VhLZqgraiyFteUDAPYOtgZZTrpUAqm04jv0Fb1iyljLKbncwkswZTIpZDIpJBIJ5PLCdhQffRSIzp27AACys7ORn58nGodMJoWdnZ1uGplMqos9JGQWNBoNunXrjjfeeBPJyXchkfybV7VqtpDLC2OQy210wyUSCaRSCSQSAQ4OjoiK2q5bX2pqKhwdHY22bcrLGHFIpdJyfT9NXiiOHj2KDRs2lDouMzMTu3fvxogRIwAUXgYok8nKvY7UVJVFtOYtD6XSCSkpmeYOw2CsLR+gMKfsrDyDLEuwFyrVw8cQbR2M2fJCrS78/mk0Wmg0WgiCALVai9de64SdO7ejXTt3yGQyLFgQDnt7e8ycGVrmsorO/+TrM2dO48sv16FJk6a4efM6/vzzIjw939FNq1YXTvfkMgSh8FEEbm4NYGtri//+9wC8vHohOfkuRo0agoULF6N167ZG2TblYaz3SKvVFvt+SqUS0R/YJi0UaWlpyM3NRf369Usdb29vj6+++grt2rVDmzZtEBUVVaE9CiKyTCNGjMKKFV9g5MjB0Go1aNKkKSZNmlbh5Y0dOxHBwYGoVs0Ojo5OaNu2PW7duqX3/DY2NoiIWIIvvliMbdu+gVqtxujR4y2iSFgSiSAIRv3p7enpiW+++Qb16tXDhQsXMH/+fERHF7+eOiQkBJ6enujWrRvOnj2LBQsWIDc3F40aNUJkZCScnMp3CIN7FOZnbfkAhTkZ6j6KNGVz1KpZu0LzKp5zsfg9CnOwtnwA4+V09+4N1K7dUPf6aXsURi8U5sBCYX7Wlg/AQmFMc+bMws2bN0odFx6+EA0aNHrqMiwpH0OxlELBO7OJyOzCwyPMHQKJsIzT+kREZLFYKIiISBQLBRERiWKhICIiUTyZTWQBnq9bBwqFjcGXm1+gQcaDbIMvl54tLBREFkChsMG6HWf0mlZmW03vy7/H+LXRO4aNG9fh2LEfAQCdO3fBhAlTERd3BitWLENeXh48Pbtj7NgJAID+/X0ftdWw0XVQmDRpGtq3d9ctLy7uV0RFfY0vvlgtut7ffjuLmTOnw82tPiSSwl5LL7zwIoKDw2Bv7wAAiI7ehn379kAqlUImk+Pdd/vCz28AgMK7rDduXIeffz4OQAKFwgajRo1Hx46dH8VReg5XrlzGokXzkZWVhbZt2+GTT2ZBLv/3v8T161dDKpVi1KhxAAo7R4SHhyIp6TZq1Hge4eERcHGpWWZeBw/ux5dfLkOtWrUhCAIKCvLxzjteGD58lF4dJ1JS7mH06GHYt+8wAODOnSRMnjwOu3btLzZd167uOHXqLA4e3I/ffz+HkJBPn7rs8uKhJyJCXNwZxMX9ik2btmLz5m24fPlvHDlyGBER4YiIWIKoqJ34++9LOH36F908n3/+BTZv3oavv/4WAQFjMXduCIDC9hDffhuFsLAQaDQavdbfrFkLbN68DZs2bcO2bbsBAN98swkAsGHDWpw69TO+/HIttmyJxrJlK3HkyCFs3lzYqfbYsSO4fPkvfP11YSyzZ8/D/PlzkJ6ehry83DJzCA+fjenTZ2D79j0QBAH79+8FUPgcnYiIcGzfHlUsxvXrV6F163bYunUXfH3fwxdfPL1Zadeub+q20YYNUTh//g9s3LjuqfOdPn0KkyePR2rqfb22n7GxUBARXFxqYuLE6bCxsYFcLkfDho2QmHgT9es3QN26bpDL5ejRwxvHj/9Y6vzt27sjNTUVGRkPkJBwHTduXMfMmSEVjqdduw64du0qcnNz8e23WzBr1hw4Oxc+zOz555/HjBmh2Lr1G+Tm5iI1NRUajRYFBQUAgAYNGmLevM8gk8lx6dKfpeZw9+4d5OXl6TrE9urlq8vt5MkTqFevAfz9hxSL6fTpX9CjR08AwDvveOHXX2OhVqv1zqlatWoYN24C9u7dhafd53zgwD4sXBip97KNjYWCiPDCCy/q/tNMTLyJY8d+hFQqLXZoxcWlJlJS7pU6/5Ejh1GvXgM891wNvPDCiwgKmg0np+oViiUnJwenTv2MV15phevXr8LOrhrq1KlbbJrGjV+AQmGDGzcS0LNnb2Rnq9CzZzd89NEkREVtRoMGDVG9enXcv59Sag6lDb93rzA3b28fDB06okR336LzyOVyODg44MGD9HLl9sILLyEjI+Op8y1Y8DleeOGlci3bmHiOgoh0rl27ihkzpmHixKmQyWRITCzaVkOARPLvf56BgVMhl9tArS6Aq2ttzJtX8burL1/+CyNGDAIAqNVqdOjgjvffH4zr16+WefhKrVZDIgGqV6+O1as3IiHhKn799TR++eUktm3bgvXrv4YgCJBIis5VmINWq4WkyAhBECCVSkqso9icT+wFFC5bfJ4nPZ7c1rb87eqLbvvKxFARLBREBAC4cOEPhIbOxJQpH+Gdd7zw++/ncP9+qm58amoqatb891f4559/UeKXfkU1a9YCK1aUPHbfqNELUKvVuHkzoVi/p2vXrkKrFdCgQSNs3x6FDh1eQ4sWzdGo0Yvw9x+CuXND8dNPx9CiRctSc3B1rVXs+H9aWipq1lSKxqhUuiItLRWurrWgVquRnZ2N556rUa48//nnH7i61tKdpC+P6tWdoFKpig1LT0+r8J5bebBQEFmA/PwCjH3/dcMvt0C/k8nJyXcRHPwJ5s6NQIcOrwIAXn75FSQm3sCtW4moU6cujhz5Hr17v2vwGMXY2dlh2LAARETMw8KFn+P5552Rnp6GyMgFGDx4GOzs7JCVlYWvvlqNefMioFDYIStLhdu3b6FXL58yc6hduw4UCgUuXPgDrVu3xeHDB3VXSZWlY8cuOHz4vxg2LADHjh1BmzZti10l9TQqlQpffbUaffsOqNC2sLd3QP369XHixFG89VY3AMB338XA3f21Ci2vPFgoiCxAetIdvac1VPfYor79Ngp5efn48stlumHvveeH4OAwhITMQH5+Hjp16oK33+5m0PXqY+jQEXBycsS0aRN0h4z69OmHfv0GAgCGDx+FdetWYciQ96FQKCCRSNCv30C8+mpHACgzhzlz5iMysvDy2KZNm6N/f3/ROMaMGY8FCz7FkCED4eTkiDlz5j819lOnfsaIEYMgkQAajQYeHp4YMmR4hbfF7NnzsGTJImza9BXU6gK8+GITfPTRTN34H344hBMnjupeDx06EsOGBVR4fY+xzbiFsLa23NaWD8A245bO2vIB2GaciJ4hR4/+gC1bNpc6bvPmbaYNxoB27NiKQ4f+W2J4zZo1sXjx8jLnq2rbg3sUFsLafoFbWz4A9ygsnbXlA1jOHgXvoyAiIlEsFEREJIqFgoiIRBn1ZLZKpYK/vz/WrFmDevXqYdasWTh37hyqVasGAJg0aRK6d+9ebJ6kpCQEBgYiNTUVjRs3xuLFi+HgUP6bU4iqEpe6tSFXKAy+XE1BAdIe5Bp8ufRsMVqhOH/+PEJDQ5GQkKAbFh8fj6ioKLi6upY539y5czFo0CD07t0bK1euxKpVqxAYGGisMIksglyhQOJ3T+8qCpSvzXg972EA9CsUbDNe2Gb87t27mDdvNtLT09CgQUPMmTMf9vb2GDVqqK6dSF5eLpKSbiMm5qCuWeGT2GZcD9HR0QgLC9MVhZycHCQlJSE4OBi+vr5Yvnw5tNriZ/MLCgoQFxcHLy8vAICfnx8OHz5srBCJ6BG2Gf+3zfjSpYvQt29/bNu2G82bv6xbz4YNW7B58zZs3rwNL7/8CkaNGldmkXiMbcafYsGCBXB3//fXxf3799GxY0csXLgQ0dHROHv2LHbt2lVsnvT0dDg6Oupui1cqlUhOTjZWiET0CNuMF7YZV6vV+OOP33UtMry9fXD8+NFisZ09+3/4558rGDy4fHdYV+U24ya74a5+/fpYuXKl7vXQoUOxd+9eDBw4UDestE6IFemMKHY9sCVTKp3MHYJBWVs+AGDvUP6un6VJl0pKtLEuz2f9aZ1Oi5LLy/49+Hhc06ZNdMNu3ryJ48d/xIAB/qhZs6ZuGldXV9y/n6J7LZNJdX8fO/Y96tdvABcXZ7i4OCM0NAznzp2FRCIRXf/j5RSdLicnB7/8chLt23fAzZvXUa1aNdSvX6/YPE2avASFQoFbt27Ax6fwP/mePbuhbdu26NDhNfTu7QNn5xo4eza11BzS0++jZk1lkeFKpKTcg0qVAQcHB9jZFZ4vqlXLFSkpycVy2LhxHT78cCJsbcUfXSuVSkrk37RpE2RkZCAzMwPOzs5lzvvZZ/8+FKno9i76uii5XFrq+sqOTVqu76fJCsXly5eRkJCgO6wkCEKJhlrOzs7IzMyERqOBTCZDSkqK6PmMsvCGO/OztnyAwpyys/IMsizBXihx6LU8976W5/Nd1g1bpd3M9bjN+IQJhW3Gb9xI0E1TeBhJonv90UeTi7UZDw+PKLY8jUYLQRCeesOYRqPF339fwpAh/o/iLWwzPmDAIFy/fhVqtabUZajVBdBqBdjbO2L16g3F2oxHRX2N9eu/hlqtKbYNHudQUFB8uFpd2EOqoEADiURSbLhU+u92unbtKh48SEfHjl2fmpdWK5TIX6MRHm17G71vpHs83eOPS9H5Hv+4Vqu1pa6v7Ni0xb6fFtPCQxAELFy4EB07doS9vT127NiBvn37FpvGxsYG7u7uOHjwIHx9fbF37168+eabpgqR6JnGNuNKPP+8M1Qqle7Hamrqfbi4/Nt+/OTJE+jWrUeF86yqbcZNdh9F8+bNMXbsWHzwwQfo3bs3WrRoAR8fHwBASEgIjh4tPA4YFhaG6Oho9OrVC2fPnsW0adNMFSLRM+txm/GwsPl4553Cvf6iLbo1Gg2OHPkeHTt2MWlcRduMp6enAUCZbcazs7MBQNdmvEmTpmXmULTNOABdm3G5XI42bdri6NEjj4b/t1j78T//vIjWrdtWKBdDthl/zGrajB87dkz39+DBgzF48OAS0yxYsED3t5ubG7Zs2WLssIgsijo/H/XfHWvw5WoeneB9GrYZ/7fN+McfB2H+/DB8880GuLrWxqef/vv/U1LSbbi61tI7drYZt2A8R2F+1pYPwKaAls7a8gEspykg24wTkdFVtbba+mKb8SqMexTmZ235ANyjsHTWlg9gOXsUbApIZCZW+BuNqgBB0AIo3/1pLBREZiBT5yI7L4fFgkym8B6LAjx4cB8KhV255uU5CiIzcHqQiEwAKnn5vrAAIMtSlbhZryKkUqlBlmMprC0fwPA5SaUyVKvmCEfH58o1HwsFkRlIBQ2eS0+o0Lz1vIcZ5PyPtZ1HsrZ8AMvJiYeeiIhIFAsFERGJYqEgIiJRLBRERCSKhYKIiESxUBARkSgWCiIiEsVCQUREolgoiIhIFAsFERGJYqEgIiJRLBRERCSKhYKIiEQZtVCoVCr4+Pjg1q1bAIAdO3bAx8cHvr6+mDVrFvLz80vMExMTg65du6JPnz7o06cPli1bVmIaIiIyHaO1GT9//jxCQ0ORkJAAALh+/To2bNiAPXv2wMHBAUFBQdi2bRtGjBhRbL74+HgEBQXBx8fHWKEREVE5GG2PIjo6GmFhYXB1dQUAKBQKhIWFwdHRERKJBE2bNkVSUlKJ+S5evIiYmBj4+vrik08+QUZGhrFCJCIiPRhtj2LBggXFXru5ucHNzQ0AkJaWhq1btyIiIqLEfEqlEgEBAWjfvj2WLl2K8PBwLFmypFzrFntIuCVTKp3MHYJBWVs+AGDvYGvuEAAYbtta23tkbfkAlpGTyZ9wl5ycjNGjR6Nfv354/fXXS4xfuXKl7u/Ro0eje/fu5V5HaqoKWm3VehaxpTzJylCsLR+gMKfsrDxzhwFngE+4K4W15QOYLiepVCL6A9ukVz1dvXoV/v7+6Nu3LyZOnFhifGZmJjZv3qx7LQgCZDKZCSMkIqInmaxQqFQqjBo1ClOnTkVAQECp09jb2+Orr77C+fPnAQBRUVEV2qMgIiLDMdmhp127duH+/fvYtGkTNm3aBADw9PTE1KlTERISAk9PT3Tr1g3/+c9/8OmnnyI3NxeNGjVCZGSkqUIkIqJSSARBqFoH8/XAcxTmZ235AIU53Tr0jbnDQD3vYTxHUQprywd4Rs9REBFR1cNCQUREolgoiIhIFAsFERGJYqEgIiJRLBRERCSKhYKIiESxUBARkSgWCiIiEsVCQUREolgoiIhIFAsFERGJYqEgIiJRLBRERCSKhYKIiESxUBARkSi9CkVwcHCJYVOmTDF4MEREZHlEH4UaFhaG5ORknDt3DmlpabrharUaiYmJRg+OiIjMT7RQ9O/fH1euXMHly5fh5eWlGy6TydC2bVtjx0ZERBZAtFC0atUKrVq1QufOnVG7dm1TxURERBZEtFA8dufOHQQGBiIjIwOCIOiG79+/X3Q+lUoFf39/rFmzBvXq1UNsbCwiIiKQl5cHb29vTJ8+vcQ8SUlJCAwMRGpqKho3bozFixfDwcGhnGkREZGh6FUo5syZAz8/P7z88suQSCR6Lfj8+fMIDQ1FQkICACA3NxfBwcHYsmUL6tSpg3HjxuGnn36Ch4dHsfnmzp2LQYMGoXfv3li5ciVWrVqFwMDA8mVFREQGo9dVT3K5HCNHjsTrr7+O1157TfdPTHR0NMLCwuDq6goAuHDhAho2bIj69etDLpfD19cXhw8fLjZPQUEB4uLidOdD/Pz8SkxDRESmpdceRZMmTXD58mU0a9ZM7wUvWLCg2Ot79+5BqVTqXru6uiI5ObnYNOnp6XB0dIRcXhiWUqksMY0+XFwcyz2PJVAqncwdgkFZWz4ajRb1vIeZOwxoNFqDbduKLkfQaiCRygwSgyFZ22cOsIyc9CoUiYmJ6NevH+rWrQtbW1vd8KedoyhKq9UWO2wlCEKJw1ilDdP3UFdRqakqaLXC0ye0IEqlE1JSMs0dhsFYWz5AYU5rVuwwdxgYP+l93Dr0TaWXY+9gi+ysvArNW897mMW9v9b6mTNFTlKpRPQHtl6ForSTzuVVu3ZtpKSk6F6npKToDks95uzsjMzMTGg0GshkslKnISIi09KrUDRt2rTSK2rTpg2uX7+OGzduoF69ejhw4AD69etXbBobGxu4u7vj4MGD8PX1xd69e/Hmm29Wet1ERFRxehWKjh07QiKRFDs0pFQq8fPPP+u9IltbWyxatAiTJ09GXl4ePDw80LNnTwBASEgIPD090a1bN4SFhSEoKAirV69GnTp1sHTp0gqkRUREhqJXofj77791f+fn5+PAgQO4fv26Xis4duyY7u9OnTrhu+++KzFN0RPfbm5u2LJli17LJiIi4yt391iFQgE/Pz/88ssvxoiHiIgsjF57FA8ePND9LQgC4uPj8fDhQ2PFREREFqTc5ygAwMXFBSEhIUYNjIiILEO5z1EQEdGzRa9CodVqsWHDBvz8889Qq9Xo0qULxo8fr7uDmoiIrJdeJ7OXLFmCX3/9FcOHD8fIkSPx+++/IzIy0tixERGRBdBrl+DkyZPYvXs3bGxsAABvvfUW3n333VIfkUpE1k/QaiyiB5GmoABpD3LNHYbV06tQCIKgKxJA4SWyRV8T0bNFIpUZpN9UZRU2aWShMDa9Dj01b94cCxcuxM2bN5GYmIiFCxcapK0HERFZPr0KRVhYGB4+fAh/f38MGDAA6enpmD17trFjIyIiCyBaKPLz8zFz5kycPn0aixYtQmxsLFq3bg2ZTAZHx6r5zAciIiof0UKxfPlyqFQqtG/fXjds3rx5ePjwIb788kujB0dEROYnWihOnDiBJUuWwMXFRTesVq1aiIyMxI8//mj04IiIyPxEC4WNjQ3s7OxKDHd0dIRCoTBaUEREZDlEC4VUKoVKpSoxXKVSQa1WGy0oIiKyHKKFwsfHB6GhocjOztYNy87ORmhoKHr06GH04IiIyPxEC8Xw4cPh5OSELl26YODAgejfvz+6dOmC6tWrY+LEiaaKkYiIzEj0zmypVIp58+Zh/Pjx+PPPPyGVStG6dWu4urqaKj4yI+cadpBV4g58Q7V4YJuG4jQa7aM7kivPuYLzqQ0YQ2VoNFpzh/BM0KuFh5ubG9zc3IwdC1kYmY1Nhds02DvYIjsrzyBxsE1DcTKZFGtW7Kj0cmwUchTkV+xc4/hJ7xskhsoaP+l9c4fwTDB5n/CdO3ciKipK9/rWrVvo06cP5syZoxu2YsUK7N69G9WrVwcADBw4EIMHDzZ1qEREBDMUigEDBmDAgAEAgCtXrmDixImYNGlSsWni4+OxdOlStGvXztThERHRE8z65KFPP/0U06dPh7Nz8SOl8fHxWLt2LW7fvo1XX30VM2fOhK2trZmiJCJ6tunVFNAYYmNjkZubC29v72LDs7Ky0KJFCwQGBiImJgYPHz7EqlWrzBQlERGZbY9i+/btGDlyZInhDg4OWL9+ve51QEAAgoODMX36dL2X7eJSNRsWWsKDYJ5k71DxPbnKzPskS9k2NgrLePyvoeKozHIsZVsU/WxYyufEkCwhJ7O80/n5+YiLi8OiRYtKjEtKSkJsbCz69+8PoPChSeV9NndqqgparWCQWE1FqXRCSkqmucMoRql0qvCVS4a86skZsIhto1Q6VfgqIUMzRByVuerJUDEYwuPPhiV+hyrLVDlJpRLRH9hmOfR0+fJlNGrUCPb29iXG2dnZ4fPPP0diYiIEQcDWrVvRvXt3M0RJRESAmQpFYmIiateuXWzYmDFjcPHiRTg7OyM8PBwffvghevbsCUEQSj1ERUREpmGWQ0+9evVCr169ig0rel7Cy8sLXl5epg6LiIhKYbarnoiIqGqwjMsWiEQIWo1FXPlB9KxioSCLJ5HKKtxzypAsoQkekTnw0BMREYlioSAiIlEsFEREJIqFgoiIRLFQEBGRKBYKIiISxUJBRESiWCiIiEgUCwUREYnindlk8TQaLe+KplJpNFqLeHCRWqNFelqWWdZtCiwUZPFkMinWrNhh7jAwftL75g6BnlD0s1HZBzFVhrV/NnjoiYiIRLFQEBGRKBYKIiISxUJBRESiWCiIiEgUCwUREYkyy+WxQ4cORVpaGuTywtWHh4ejTZs2uvF//fUXQkJCkJWVBXd3d8ydO1c3LRERmZbJ//cVBAEJCQk4fvx4mf/5BwYGYv78+Wjbti2Cg4MRHR2NQYMGmThSIiICzHDo6dq1awCAgIAAvPvuu4iKiio2/vbt28jNzUXbtm0BAH5+fjh8+LCpwyQiokdMvkfx8OFDdOrUCbNnz0ZBQQGGDRuGxo0bo0uXLgCAe/fuQalU6qZXKpVITk42dZhERPSIyQtFu3bt0K5dO93r/v3746efftIVCq1WC4lEohsvCEKx1/pwcXE0TLAmZq4+NWLsHWzNMu+TbBSWcY7K2uKozHIscVuYMyZjfX8t4f8Fk2/Vs2fPoqCgAJ06dQJQWAiKnquoXbs2UlJSdK/v378PV1fXcq0jNVUFrVYwTMAmolQ6ISUl09xhFKNUOiE7K69C89o72FZ43ic5A2br4fMka4qjsr2RLG1bmLPXEwCjfH9N9f+CVCoR/YFt8nMUmZmZiIyMRF5eHlQqFWJiYtC9e3fdeDc3N9ja2uLcuXMAgH379uHNN980dZhERPSIyfco3n77bZw/fx7vvfcetFotBg0ahHbt2mHMmDGYMmUKWrVqhcWLFyM0NBQqlQotW7bEsGFsMU1EZC5mOaA3bdo0TJs2rdiw9evX6/5u3rw5du3aZeKoiIioNLwzm4iIRLFQEBGRKBYKIiISxUJBRESiWCiIiEgUCwUREYlioSAiIlEsFEREJIqFgoiIRLFQEBGRKBYKIiISxUJBRESiWCiIiEgUCwUREYlioSAiIlEsFEREJIqFgoiIRLFQEBGRKLM8CpXEPe/sALnM/DVco9GaOwSiKkOpdDL7cjUFBUh7kGvwGFgoLJBcJsWaFTvMHQbGT3rf3CEQVRm3Dn1j8GXaO9giOytP7+nreQ8DYCWFYsWKFTh06BAAwMPDAzNmzCgxfvfu3ahevToAYODAgRg8eLDJ4yQiIjMUitjYWJw6dQoxMTGQSCQYPXo0jhw5gu7du+umiY+Px9KlS9GuXTtTh0dERE8weaFQKpUICgqCQqEAALz44otISkoqNk18fDzWrl2L27dv49VXX8XMmTNha2tr6lCJiAhmKBRNmjTR/Z2QkIBDhw7h22+/1Q3LyspCixYtEBgYiIYNGyIoKAirVq3C9OnT9V6Hi4ujQWM2laInrWwUlnH6yN6h4gW6MvM+yVK2h7XFUZnlWOK2MGdMhvy8V2a5xjipbrateuXKFYwbNw4zZsxAo0aNdMMdHBywfv163euAgAAEBweXq1Ckpqqg1QqGDNfolEonpKRk6v4uyFebOaJC5TmRVlR5T8KJcQYsZntYUxw2CnmllmNp26Ky+VSWoT7vRZX3e+QM6P4fKQ+pVCL6A9ss12CeO3cOI0aMwMcff4y+ffsWG5eUlIRdu3bpXguCALncMn65EBE9i0xeKO7cuYOJEydi8eLF6N27d4nxdnZ2+Pzzz5GYmAhBELB169ZiJ7qJiMi0TP5TfcOGDcjLy8OiRYt0w/z9/XHs2DFMmTIFrVq1Qnh4OD788EMUFBSgffv2GDlypKnDJCKiR0xeKEJDQxEaGlpi+AcffKD728vLC15eXqYMi4iIysCD/0U8V8MeChuZ2dZvrBYAFaXRaB/d6VkxzgaMhciSVfa7IqY83yNjtd1hoShCYSPD+j3nzbJuBwdbZD26umGMXxuzxPAkWSVaiRjyChS2EiFLV5nvipjyfo+M9V0xf+c5IiKyaCwUREQkioWCiIhEsVAQEZEoFgoiIhLFQkFERKJYKIiISBQLBRERiWKhICIiUSwUREQkioWCiIhEsVAQEZEoFgoiIhLFQkFERKJYKIiISBQLBRERiWKhICIiUSwUREQkyiyFYv/+/ejVqxd69OiBrVu3lhj/119/wc/PD15eXggJCYFabZhHahIRUfmZvFAkJydj2bJl2LZtG/bu3YsdO3bgn3/+KTZNYGAg5syZg++//x6CICA6OtrUYRIR0SNyU68wNjYWHTt2RI0aNQAAXl5eOHz4MCZNmgQAuH37NnJzc9G2bVsAgJ+fH5YvX45BgwbpvQ6pVFLh+BztbSo8b2XY29lAImh1r52c7M0Sx5MqGofcRg51geH2BKv69jA0Q8RR2ffI0raFoT9zFY3DkCqSU0X+/3vaPBJBEIRyL7US1q5di+zsbEyfPh0AsHPnTly4cAHz5s0DAPz++++IjIzEt99+CwC4ceMGxo4di++//96UYRIR0SMmP/Sk1WohkfxbvQRBKPb6aeOJiMi0TF4oateujZSUFN3rlJQUuLq6ljn+/v37xcYTEZFpmbxQdO7cGadPn0ZaWhpycnLwww8/4M0339SNd3Nzg62tLc6dOwcA2LdvX7HxRERkWiY/RwEUXh67du1aFBQUoH///hgzZgzGjBmDKVOmoFWrVvj7778RGhoKlUqFli1bIiIiAgqFwtRhEhERzFQoiIio6uCd2UREJIqFgoiIRLFQEBGRKBYKIiISxUJhYjt37kSfPn10/zp06IDw8HDExsbC19cXPXr0wLJly8wdZrns27cPvXv3Ru/evfHZZ58BQJXOBwDWrVsHLy8v+Pr6YvXq1QCqZk4qlQo+Pj64desWgLJzqEqNOJ/MCQBmzJiBPXv26F4nJSVh8ODB6NmzJz788ENkZWWZI1S9PJnPjh074OPjA19fX8yaNQv5+fkAzPweCWQ2//vf/4Tu3bsLSUlJgoeHh3Dz5k2hoKBACAgIEE6cOGHu8PSSnZ0tvPrqq0JqaqpQUFAg9O/fXzh69GiVzUcQBOGXX34RfHx8hMzMTEGtVgvjxo0T9u3bV+Vy+uOPPwQfHx+hZcuWQmJiopCTk1NmDr179xZ+//13QRAEYdasWcLWrVvNGHnZnszp7t27wrhx44TWrVsLu3fv1k03duxY4cCBA4IgCMKKFSuEyMhIc4Us6sl8rl27JnTv3l3IzMwUtFqtMGPGDGHTpk2CIJj3PeIehRl9+umnmD59OhITE9GwYUPUr18fcrkcvr6+OHz4sLnD04tGo4FWq0VOTg7UajXUajUcHR2rbD4AcOnSJXTt2hWOjo6QyWR44403sHPnziqXU3R0NMLCwnSdDS5cuFBqDqU14rTU3J7Maf/+/ejWrRu8vb110xQUFCAuLg5eXl4AqlY+CoUCYWFhcHR0hEQiQdOmTZGUlGT294iFwkxiY2ORm5sLb29v3Lt3D0qlUjfO1dUVycnJZoxOf46Ojpg6dSq8vb3h4eEBNze3Kp0PALRs2RKnTp3CgwcPkJeXh2PHjuG3336rcjktWLAA7u7uutdlvS9PDlcqlRab25M5jR49GgMGDCg2TXp6OhwdHSGXFzbHrkr5uLm5oUuXLgCAtLQ0bN26Fd26dTP7e8RCYSbbt2/HyJEjAVTtRoh///03du/ejePHj+PkyZOQSqVISEiosvkAQKdOneDn54ehQ4di9OjR6NChA9RqdZXOCSj7c1aVP3+lKS3+qpZPcnIyhg8fjn79+uH11183+3vEQmEG+fn5iIuLg6enJ4CnN0q0ZKdOnUKnTp3g4uIChUIBPz8/nDlzpsrmAxSeXOzRowf279+PLVu2QKFQ4LXXXqvSOQFlf86srRGns7MzMjMzodFoAFS99+rq1avw9/dH3759MXHiRADmb5bKQmEGly9fRqNGjWBvX/igkzZt2uD69eu4ceMGNBoNDhw4UGUaITZv3hyxsbHIzs6GIAg4duxYlc4HAG7duoUJEyZArVYjMzMTu3btwrRp06p0TkDZnzNra8RpY2MDd3d3HDx4EACwd+/eKpOPSqXCqFGjMHXqVAQEBOiGm/s9MvkT7ghITExE7dq1da9tbW2xaNEiTJ48GXl5efDw8EDPnj3NGKH+unbtikuXLsHPzw82NjZo1aoVJk+ejC5dulTJfIDC4tejRw+8++670Gg0GDFiBDp06FBl36PHxD5nixcvLtaIc9iwYWaOtnLCwsIQFBSE1atXo06dOli6dKm5Q9LLrl27cP/+fWzatAmbNm0CAHh6emLq1KlmfY/YFJCIiETx0BMREYlioSAiIlEsFEREJIqFgoiIRLFQEBGRKBYKsioXL17ElClTRKdZsWIFfvzxR6Ou+8KFC5gzZ47B10FkDiwUZFVatWqF5cuXi05z5swZo7RoLrruf/75x2L7CxGVF2+4I6ty5swZzJs3D6+88gocHR1x+fJl3L17F82aNcNnn32GvXv3Ij4+HpGRkZDJZPDw8MDixYsRFxcHjUaDl19+GaGhoXB0dISnpyf69u2L06dP486dO+jTpw+mTZuGrKwszJo1Czdu3IBUKkXLli0RHh6OuLg4zJs3D+vXr8fy5cuRmZmJWbNmQSaTwcXFBdOnTwdQeFftDz/8gJUrV5aZR1BQEOzs7PC///0Pqamp8PT0RI0aNXD8+HGkpKRg/vz56NSpE/Lz88uM//jx41i7di3y8/ORlpaG9957D9OmTcOZM2ewbNky1K9fH1euXIFarcbcuXPRoUMHU71NVMVwj4KsVnx8PDZs2ICDBw/i9u3bOHz4MAYPHoxXXnkFM2bMQPfu3bFu3TrIZDLs2bMH3333HVxdXbF48WLdMrKzs7Ft2zZs374dGzduRGJiIo4cOYKsrCzs27cPu3btAlB4t/1jderUwZQpU+Du7o6IiAgMHjwYu3fv1u3FREdHw9/f/6nxX7p0CV9//TWioqKwceNG2NvbY/v27Rg2bBjWr18PAGXGLwgCNm7ciEWLFmHPnj3YsWMH1q1bh7S0NACFh8YCAgKwd+9e+Pn5VZkHMZF5cI+CrNYbb7wBhUIBAGjatCkyMjJKTHPixAlkZmYiNjYWQOGzDFxcXHTju3XrBgCoVasWXFxckJGRgQ4dOmDZsmUYOnQoOnfujOHDh6Nhw4a4e/duqXG0aNEC9erVw4kTJ9C4cWPcu3cPXbt2fWr8b7/9NmxsbKBUKmFvb4833ngDANCgQQM8ePBANH6JRII1a9bgxIkTOHDgAK5evQpBEJCTkwMAqFu3Llq0aAEAePnllxETE/PUeOjZxUJBVsvOzk73t0QiQWndarRaLYKDg+Hh4QEAyMrKQl5enm68ra1tiWXUr18fR44cwZkzZ/Drr79i5MiRCA8Ph4ODQ5mxPN6raNSoEQYOHKhXi+jHRe6xx89X0Cf+7Oxs9O3bF++88w7c3d3Rr18//Pjjj7ptoM+2IXqMh57omSOTyXSHgbp27YqtW7ciPz8fWq0Ws2fPfmoDuW3btmHWrFno2rUrAgMDdY0Ry1oHAHh5eeGvv/7C999/j379+hksl7Liv3HjBlQqFaZNmwZPT0+cOXNGNw1RebFQ0DPH09MTS5cuRUxMDCZMmAA3Nzf07dsXvXr1giAICAoKEp3/vffeg0ajQa9eveDn54fMzEwMHTq02DRt27ZFYmIiJk2aBKBw78DLywvt2rWDs7OzwXIpK/5mzZrhrbfegre3N7y9vXH8+HG89NJLuHHjhsHWTc8Odo8lMoHs7GwMGTIEc+bM0T33mKiq4DkKIiM7efIkPv74Y3zwwQe6InHt2jXd5bJPaty4Mf7zn/+YLkCip+AeBRERieI5CiIiEsVCQUREolgoiIhIFAsFERGJYqEgIiJRLBRERCTq/wG8j73pcEZU0AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.histplot(data = df, x=\"intensity_mean\", hue=\"file_name\")" ] }, { "cell_type": "markdown", "id": "5d7b511b-8e8c-4f7d-97d5-f25cc0bcf8fa", "metadata": {}, "source": [ "We can instead plot the kernel density estimation (kde) with `kdeplot` function. Just be careful while interpreting these plots (check some pitfalls [here](https://seaborn.pydata.org/tutorial/distributions.html#kernel-density-estimation-pitfalls))" ] }, { "cell_type": "code", "execution_count": 24, "id": "450fe3a4-3069-4370-8b63-c4142ae77713", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEJCAYAAABYCmo+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABiTUlEQVR4nO3deXxM5/7A8c/sWYnsJLbYlxDEvqQUsYSQ6kbRVnWvclutrXqr1NVSqr31UxdtLS1Fk6sltlJUkNhDbAkRiewJ2Wc7vz9yDSmRYCaT5Xm/Xn29OnPOec73PGbynfOcc76PTJIkCUEQBEEwI7m1AxAEQRCqH5FcBEEQBLMTyUUQBEEwO5FcBEEQBLMTyUUQBEEwO5FcBEEQBLMTyUUQBEEwO6UlG9+6dSvLli1Dr9czfvx4xowZU2J5TEwMM2fOJC8vD39/fz755BOUSiXHjh1j/vz56HQ6nJyc+Oyzz/Dy8uLWrVu8//77JCQk4OzszJIlS3Bzc0Or1TJz5kyio6OxsbFh4cKFNGnSpNxxZmXlYTTWnMd9XFwcyMjItXYYlYLoi2KiH4qJfrjjQX0hl8uoU8f+gdtbLLmkpKSwePFitmzZglqt5rnnnqNr1640bdrUtM7UqVOZO3cufn5+zJgxg40bNzJ69GimTp3Kt99+S8uWLdm0aRNz585l2bJlLFmyBH9/f7777jtCQ0OZN28eS5YsYc2aNdja2rJ9+3YiIyOZPn06GzduLHesRqNUo5ILUOOO90FEXxQT/VBM9MMdj9MXFhsWO3ToEN26dcPJyQk7OzsCAwMJDw83LU9MTKSwsBA/Pz8AQkJCCA8PR6vV8u6779KyZUsAWrRowY0bNwDYt28fw4YNAyAoKIj9+/ej0+nYt28fw4cPB6Bz585kZmaSlJRkqUMTBEEQymCx5JKamoqbm5vptbu7OykpKaUud3NzIyUlBbVaTXBwMABGo5FvvvmG/v3737ONUqnEwcGBzMzM+7aVnJxsqUMTBEEQymCxYTGj0YhMJjO9liSpxOuylmu1WqZNm4Zer+e111677z4kSUIul9+z7e33y8vFxeG+8SckJJCXl0d1q76WmmrtCCqPytQXMhnY29tTv379h/r8moubm2OF77MyEv1wx+P0hcWSi6enJ1FRUabXaWlpuLu7l1ielpZmep2enm5anpeXxxtvvIGTkxPLli1DpVIBxWc/6enpeHp6otfrycvLw8nJCQ8PD1JTU2nQoME9bZVHRkbuPWOLOTnZ6PUGXF29kMmq1011SqUcvd5o7TAqhcrUF5JkJDs7natXE3F0dKrQfbu5OZKWllOh+6yMRD/c8aC+kMtl9/1RXmIdSwQF0KNHDyIiIsjMzKSgoICdO3fSp08f03IvLy80Gg3Hjh0DICwszLR86tSpNGzYkCVLlqBWq03bBAQEEBoaCsC2bdvw9/dHpVIREBBAWFgYAFFRUWg0GurVq/dY8RcU5OLo6FTtEotQeclkchwd61BQIO5WEqo+mSVL7m/dupXly5ej0+kYNWoUEydOZOLEiUyaNAlfX1/Onz/PrFmzyM3NpU2bNsyfP5/Lly8zcuRImjZtilJZfGLl7u7OihUryM7OZtq0aSQkJODo6MjChQvx9vamqKiI2bNnEx0djVqtZu7cubRp06bccd7vzCU5OR4PjwYlhtuqi8r0a93aKltfSJJESso1PD0bVuh+xS/2YqIf7njcMxeLJpeqorTkUtFf8IpS2f6gWlNl7IuH/ewZczPRXz2O8VYKMhsHlI39UdTxeqh9ij+qxUQ/3PG4ycWiD1EKgmA5ktGI7kw4RVFbwKAHlQ3oCtFG/YqySTdseo9Hpra1dphCDSWSSw20YMFnHD58iAYNGvH225PJyspk8eLPWbOm/A+eCtYlSUYK969Gf/EAykad0HQZhdypLsaCW+iid6E9+Rv5GdewDfoQuV1ta4cr1EAiudRAoaGb2bz5N9zdPQDIysq0ckTCwyo6shH9xQOoOwaj7jTCdG1QblsLTeenUNRrRcGOJRRs/xK7YdPEGYxQ4URyqWHefPMVJEni/fcncfXqFb777vsSy3U6HcuWLeXkyeMYDEaaN2/B5MnvY29f+vjq8eNRrFjxLfXqeREXF4ter2fq1Bm0a+fHtWvxfPnlAvLz88nISKdZs+Z88sl8NBoN/fr14NlnxxAVdYSCggJeeulV9u7dTVzcZVxd3ViwYDG2trZcvXqFr75ayM2bNzEajYwa9SxBQcEW7qnKS3/tJLrT4aha9yuRWO6m9GqN7YC3KQhfQuGB77Hp93q1vDlFqLzEfbY1zLff/geApUuXm85c7rZ27fcoFEpWrlzLDz/8hKurG8uWfVNmu+fOneW5515g9er1DBkynO+++xaArVtDGTw4iO+++54NG0K5cSOJiIiDQPGDss7OLqxY8SODBg1lwYK5vPvue6xd+wu5ubkcOPAner2eWbM+5PXX32HVqrV88813/PzzWqKjz5ixV6oOqTCXwn0rkbvUR9P9+QcmDGX9dqg7jUAfewT9pUMVGKUgiDMX4W8OHTpATk4ukZFHANDrdTg51SlzOw8PT5o1awFAixYt2b59KwBvvPEOkZFHWLfuBxISrpGenkZBQYFpuyee6AeAl5c3TZo0wc2t+OHXevXqkZNzk4SEayQlXWf+/DmmbYqKirh06QJt2/qa56CrkKJjoUhFudgO/QCZQlXm+mq/IAzXoymMWI+yQXtkNg++w0cQzEUkF6EEg8HIu+++R/fuPQHIz89Hq9WWuZ1Goynx+vYd7v/850wMBj39+g2ge/depKQkc/fd7yrVnYdkFYp7P45GoxF7ewe+/3696b3MzIwHDtNVV4asRHTn/kDVqi8Kl/rl2kYml6PpNZ78zR9RFLkJm94vWjZIQfgfMSwmlNC1a3e2bNmITqfDaDSyYMFcli8ve1isNEePRvDiixN58smBAJw7F43RaCj39g0aNESj0bBjxzYAUlKSGTfuWS5ciHnkmKoq7bFQUKpR+498qO0Uzl6o2vRHF/MnhswEywQnCH8jzlyEEl58cQLffPMVL700BqPRQLNmzXn77cmP3N6rr77FjBlTsbW1wd7eAT+/jly/fr3c26tUKubPX8RXXy1k/fof0ev1vPLK67Rr5/fIMVVFhqwk9HFRqP2GIrd5+GKCmo7D0V04gDYqFNuB71ggQkEoSTyhj3hCvyarjH1xv89ewR/L0V89jv3ohY+UXKD4eo32WCh2I/+Jwq1RiWXiyfRioh/uEE/oCxVi9uzpXLsWf99lc+Z8RoMGjSo2oBrEmJ+NPvYoqjZPPnJiAVD7DkR7ZifaE1vF2YtgcSK5COUyZ858a4dQY+nO7QXJiLrNk4/Vjkxth7rNk2hP/IYxOxm5k6eZIhSEe4kL+oJQiUkGPbqYfSjq+yKvfe9zSQ9L1aY/KBRoT4eXvbIgPAaRXAShEtNfO4VUcPOxz1puk9vVRtWsB7pLh5CK8szSpiDcj0guglCJ6S/9hcy2NgrvtmZrU9X6STBo0Ymn9gULEslFECopqTAX/bVTKJt2QyZXmK1dhWtD5G4+6M7tRdwsKliKSC6CUEnpYo+A0YCqeU+zt61u3RdjdhKG5Itmb1sQQNwtVqWsWvUdf/yxG4AePXry5pvvEhl5hG++WUxRURH9+g3g1VffBGDUqGHY2NigVKqQJAmFQsHbb0+mY0d/U3uRkYdZu/YHvvpq2QP3e/x4FB9+OAUvr/rIZMW1vXx8mjBjxsfY2dkDsHHjesLCtiCXy1EolAwfPpKQkKeB4lIwq1Z9x/79ewEZarWKCRNep1u3Hv+L4/7HcOnSBf71r7nk5eXh59eB99+fbpr6GmDFimXI5XImTHgNgJycHObMmUVSUiJOTnWYM2c+Li6upR7Xtm1b+eabxbi7eyJJEjqdlv79Axk/fgIKRdlnCmlpqbzyyljCwnYAcONGEu+88xqbNm0tsV6vXv4cPBjFtm1bOXHiGDNn/rPMtgF0lw4hd/ZG4dKgXOs/DGWTLhCxHl3MXpR1W5i9fUGwaHLZunUry5YtQ6/XM378eMaMGVNieUxMDDNnziQvLw9/f38++eSTEn88lixZgkKh4J13iu/JDwkJwWAoLh1SWFhIQkIC+/fvp6ioiKCgIBo0KP4Surq6snLlSrMdx19nbnDw9A2ztXe3Xu3q0tO3bpnrRUYeITLyMKtXr0Mmk/Hee++wa1c4y5Z9zTfffIe7uwcffDCZiIi/THXBvvjiK+rWrQfAwYP7+eSTmYSF7cBoNPLTT2tZs2Y1Pj5NyhVnixat+Oab70yvZ836gB9/XM3rr7/NypXLOXXqBF9/vRxnZxeysrKYMeM9bt26yYsvvsIff+ziwoUYVq5ci1Kp5Nq1eN58cwJr1mzEzs6O+fPn3PcY5sz5iA8//Ii2bX2ZP38OW7eGMnLkKHJzc/n66y/ZvXsHo0ePM8W0YsW3tGvXgS+++Irw8N/56qtFZd5C3atXADNmfAxAQUEB06a9x6pV3zFx4hsP3C4i4iBfffUlGRkZ5eq/h2XMTsaYGoum67MWaV+m1KBq1hNdzD6M3W8Bj/78jCDcj8WGxVJSUli8eDHr168nNDSUDRs2cPny5RLrTJ06ldmzZ7Njxw4kSWLjxuKZEHNycpgxYwarV68usf6WLVsICwsjLCyM9u3bM2nSJFxdXYmOjmbYsGGmZeZMLJWFi4srb701BZVKhVKppGHDRiQkXKN+/QbUq+eFUqlk4MDB7N27+77bd+zoT0ZGBjdvZnP16hXi46/w4YczHzmeDh06ERcXS2FhIT/9tIbp02fj7OwCQJ06dfjgg1msW/cjhYWFZGRkYDAY0el0QHG9sE8/XYBCoeTcubP3PYbk5BsUFRWZKh8PGTLMdGwHDuzD27sBzz33QomYIiL+YuDAQQD07x/I4cOH0Ov15T4mW1tbXnvtTUJDN5V5LeK338L47LPPy932w9JdPgQyGcqm3Sy2D1WrvmDUo7940GL7EGoui525HDp0iG7duuHk5ARAYGAg4eHhvP322wAkJiZSWFiIn58fUHxWsnTpUkaPHs2ePXto1KgRL7300n3bjoiI4Pz588yfX/yr9MyZM1y8eJHg4GBq167NzJkzadHCfKf6PX3Ld3ZhSXefYSQkXOOPP3YzatSzJYZ9XFxcSUtLve/2u3aF4+3dgNq1nXBxcWbatI84fjzqkWIpKCjg4MH9dOjQiStXYrGxsTWdId3WuLEParWK+PirDBo0lL17dxEU1J/27TvQsaM/gwcHUatWLdLT0+57DPd7PzW1+NgGDw4CYOXK5SX2efc2SqUSe3t7srOzcHV1K/ex+fg05ebNm2RnZ1GnjnOp682b90W523xYkgS6SxEovNogty97uoNHpXD2Qu7RFN3Fg0hPPmOx/Qg1k8WSS2pqKm5ud77U7u7unD59utTlbm5upKSkADBixAgAvv766/u2vXTpUqZMmWIaF9doNAwfPpznnnuOAwcO8NZbb7Ft2zbUavV9t/+7+9XISU2Vo1RWvvsd4uJi+cc/JvHOO5NRKBRcv37NFKdcLkOhuBP31KnvolKp0Ol0eHp68tlnC0zLlEo5CoUcmUxW5nEqFHIuXIjhpZdGA6DX6+nUqTNjxowlLi4Wo9Fw3zb0+uL3nZ2dWLHiey5fvsTRo0c4eHA/69evYfXqNchkxXH//RhKe//u/cjlMtOxQPG1HaXy7nUkVCpFqcf39+3v/n87O9ty//vfXk+lUtzTniRJpj6Wy2Xl6m85RqScNOr0eZpabpYdrtJ06Et6+Aq0KVdw8/Sx6L6qCjcL93lV8jh9YbHkYjQaS8ySd/tLVt7lpbl06RJZWVn07dvX9N7tazIAAQEBLFq0iLi4OFq2bFmuWO9XuNJoNFa6goanT59k1qwPmTTpH/TvH8iJE8dIS0s3xZmWloazs6vp9d3XXG7T642mYo0GgxFJkso8ToPBeM81l9vq12+ETqcnLi6uRH2x4qRjxMurAWvX/kinTl1o1qw5jRo14ZlnRvPJJ7PYs2c3rVq1ue8xuLi4kZ5e8n0XF9cSsd7+N7v9npubO6mpabi7e6DX68nLy8fevlapx/f37QEuXLiIu7sHGo1tuf/9b69nZ+dAbm5uie0yMzNwdCyOwWiUytXfRm0hyGQUuLSiyMJFFCX39iBXkBu9n1uK8p/hVVeicOUdj1u40mI/zT09PUlLSzO9TktLw93dvdTl6enpJZaXZvfu3QwZMqTEe2vWrCErK8v0uvgXbPW6ES4lJZkZM97n44/n0r9/IACtW7clISGe69cTMBgM7Nq1g27dzH/b6oPY2NgwbtzLzJ//KVlZmQBkZWXy+efzGDNmHDY2NuTl5fGf/ywjPz8fgLy8XBITr9OsWfNSj8HTsy5qtZrTp08CEB6+zXR3WWm6detJePjvAPzxxy7at/d7qM9Bbm4u//nPMkaOfPoRegLs7OypX78++/btMb333//+ir9/l4dqR9JrUXi2eKwileUls3FA2aA9udEHkB5inh1BKIvF/gL36NGDr7/+mszMTGxtbdm5cyeffvqpabmXlxcajYZjx47RqVMnwsLC6NOnT5ntnjx5kvHjx5d4LzIyksLCQiZOnMjRo0cxGo34+FSvU/yfflpLUZGWr79ebHpvxIgQZsz4mJkzP0CrLaJ795707WueMiEPY+zYF3F0dGDy5DdNZ6TBwU/x1FPF4/jjx0/gu+++Zfz459Fo1MhkMp566hk6dy6+WF3aMcyePZfPPy++Fbl585aMGvXcA+OYOPF15s37Jy+88AyOjg7Mnj23zNgPHvyTF18cjUwGBoOBgIB+vPDC+DK3K81HH33KokX/YvXq/6DX62jSpBn/+MeHpuU7d24vkXzGjn2JceNeNr2W9FowGlA27vTIMTwsZdPuFF49jiHxHMr6NW/qaMEyLDqfy9atW1m+fDk6nY5Ro0YxceJEJk6cyKRJk/D19eX8+fPMmjWL3Nxc2rRpw/z580tcJ7l9zeXuYa8hQ4bw9ddf06TJnQvcKSkpTJs2jbS0NDQaDfPmzSv3kBiI+VxqssrWF8b8bJIT4/Cs2xC5g0uF7FPSa8lfPwW5dzts+71WIfusrMSw2B2POywmJgtDJBeAPXt2smbN9/dd/+7566uaDRvWsX377/e87+rqysKFS0tNLtbqD0NWEilZ6dTzaWexfdzX0bXkRO/HYexSZCqbit13JSKSyx0iuZiBSC41V2XqC8mgx5iZQGpBEXUblP/M2xwcChK4seYjbPq+iqrZg69tVWciudxRaS/oC4LwcCRt8Q0PKMt3C7052dRvicy+Dvq4yArft1A9ieQiCJWEVJQPCpVZKyCXl0wmR9m4M/qEM0jaggrfv1D9iOQiCJWAZDSCrhCZ2s5qMaiadCkuBxN/wmoxCNWHSC6CUAlIugJAsmpykbv7ILN3Rhd71GoxCNVH9XrSsJoTJfeLS+4nJyfz6acfkZWVSYMGDZk9ey52dnZMmDDWVDW7qKiQpKREfv11m6mg5t9VqpL72nyQyUGlKXO/liKTyVH6dEZ3dg+SNt+qiU6o+sSZSxVxd8n9779fz4UL59m1K5z58+cwf/4i1q79hfPnzxER8Zdpmy+++Irvv1/PDz/8xMsvv8onnxRXQb5dcv/jj2ea/hiXpUWLVnz//XpWr17P+vWbAfjxx+Kq1StXLufgwf18/fVy1qzZyOLF/2bXru18//1/AEqU3P/hh5/46KNPmTt3NllZmRQVFZZ6DHPmfMSUKR/w889bkCSJrVtDAfjyy38xcuQo1q/fTMuWrU37WblyDd9/v57vv19P69ZtmTDhtVITy229egWY+mjlyrWcOnWSVavuLXPzdxERB3nnndfNUnJfkiQkbQEytW25SiBZksqnc/HQ2FUxNCY8HnHmUg66i3+hu7DfIm2rWvQp10yDd5fcB+4puQ+YytXfns/lbneX3L95M8tUcv+XX35+pLg7dOjEkSOHTSX316zZeE/J/VdffZHnnnuhRMl9pVJZasn9u4+hcWOfe0rur1y5nGHDRnDy5Ak++2whUFwh+e23X+PNNyeZYouKOsrly5dM87SU1+2S+1Onvssrr7z+wD/0t0vujxv34KoB5fK/p/KpBGcKcvcmyBxc0MUdtcgMmELNIc5cqggfnyamP7S3S+7L5fJHKrnv49OEadM+wtGx1iPFcrvkftu2vuUuuZ+fn0tQUH/+8Y+3Wbv2exo0aPhIJfezs7Oxt7c31QwrXj+lxL5XrlzOq6++Wa6hrb+7u+T+g8yb9wU+Pk0fuv37uX0Lskxta5b2HodMJkPp0xnD9WikojxrhyNUYeLMpRxUzXtWml9xcXGxfPDBZN56610UCgUJCfF3LZWQye78Xpg69V2UShV6vQ53d08+/fTBszI+yIULMbz44t0l9/159tkxXLkSW+rQml6vRyaDWrVqsWzZKmJjLxMZeZi//jrA+vVrWLHih/9Vw757q+JjuF/VbLlchiQZ7zmjkMvvHHNcXCw3b2bTs2fvRzrO201rNA9/7ePuvr+tPNW+JW0BKDVWuQX5flQ+XdCdDkcffwJV817WDkeookRyqULuV3I/Pf3OmH9GRgaurnd+7d+v5P6jKq3kfqNGPuj1eq5du3qfkvsSDRo04uef15pK7jdp0pTnnnuBTz6ZxZ9//kGrVm3uewzu7h5kZKSb3s/MzMDV1Y06dZzJzc3FYDCgUCjIyEjHxeVOqfgDB/bx5JMDH/k4L1++jLu7h+lGhYdRq5Yjubm5Jd7Lysp84BmiZNCDvgiZneUmBXtYcrfGxUNjsUdFchEemRgWqyJEyf3ikvtKpZL27f3Ys2fX/97/vUQp/rNnz9Cund8jHYs1Su4X34JcOYbEbiseGuuCIfGsGBoTHpk4c6kiRMn9OyX333tvGnPnfsyPP67E3d2Tf/5znimWpKRE3N09yh27tUvuv/DMM7wQEmyVki8PovLpjO70dvRXj6Nq8WhDjELNJgpXIgpX1mTW7AtJkjBmXEOmsUfueGc40xqfvb8XKZQkibyfpyJ3qofd4H9UaCzWJApX3vG4hSvFmYsA1NyS+6WpkP7QFYJkhEo0JHabTCZD2dgfXfQupKI8ZJqHvwYl1GzizAVx5lKTWbMvjLkZSAU5yF0aILvrjrfKcOYCYEiNJT/0U2yemFhp7pa0NHHmcocouW9BIu8KliRpC0BtUyKxVKbPnNztf7XGRBl+4RFYNLls3bqVIUOGMHDgQNatW3fP8piYGEJCQggMDGTmzJno9foSy5csWWKa6hjg6NGjdO3aleDgYIKDg5k+fToAWq2WqVOnMnjwYEaOHElsbOxjx65UqsnLu1WpvuxC9SEZdGDQlajfJUkSeXm3UFaSi/slHqgUZfiFh2Sxay4pKSksXryYLVu2oFaree655+jatStNm955qnnq1KnMnTsXPz8/ZsyYwcaNGxk9ejQ5OTnMnz+f33//nVdeecW0fnR0NC+//DKvvVZynu81a9Zga2vL9u3biYyMZPr06WzcuPGx4q9Tx42srDRyc7Mfq53KSC4vfkhRsF5fSNrC4msZOgnZzTvVAJRKNXXquD1gy4ql8umM7syO4gcqa/AMlcLDs1hyOXToEN26dcPJyQmAwMBAwsPDefvttwFITEyksLAQPz8/AEJCQli6dCmjR49mz549NGrUiJdeeqlEm2fOnCE9PZ3ffvsNLy8vPv74Y+rWrcu+fft49913AejcuTOZmZkkJSVRr96jP0CoUChxda37yNtXZmJc+Q5r9UX+toVIOenYP/uvCt/3wyguw18H/ZUokVyEh2KxYbHU1FTc3O78AnN3dyclJaXU5W5ubqblI0aM4NVXX72nNpSjoyNjx45l69atBAQEMGXKlFLbSk5OtshxCcLjknSFGJLOo2joZ+1QylQ8Q6U/+oTTYmhMeCgWO3O5X22ou1+Xtfx+5syZY/r/559/nkWLFpGTk3PPtsV1qMqfN8u666E6cnNztHYIlUZF90Xe+XPkGvW4+nbDthL9O5TWD4UdA0iK3oVd9kUc2lT/cjDiu3HH4/SFxZKLp6cnUVFRptdpaWm4u7uXWJ6WlmZ6nZ6eXmL53xmNRpYvX37PGY1CocDDw4PU1FQaNGhQrrb+7n63IldnYljsDmv0RcGZCFDbkmPrTW4l+Xd4UD9ImnrI7JzIPHWAAvf2FRxZxRLfjTsq7a3IPXr0ICIigszMTAoKCti5cyd9+vQxLffy8kKj0XDs2DEAwsLCSiy/J1C5nF27drFjR/Gsf6GhobRv3x47OzsCAgIICwsDICoqCo1G81jXWwTBUiTJiCHhFMr67ZDJq8YzzMVDY53QXzuNpCuydjhCFWGx5OLh4cGUKVMYN24cI0aMICgoiHbt2jFx4kTOnDkDwMKFC5k/fz6DBg0iPz+fcePGPbDNBQsW8OOPPzJ06FA2b97M3LlzARg7dixarZahQ4cyb948Pv/8c0sdliA8FmPaFaSCWyirwPWWuykbdwaDFn3CKWuHIlQR4gl9xLBYTVbRfVEUuRntyd9xGLsUmU3ludZXVj9IRiN56yajqNsC2/5vVWBkFUt8N+6otMNigiDcSx9/EoVns0qVWMpDJv/fXWPXTiHpxdCYUDaRXAShghhzMzBmJqBs4GftUB6JsrE/6LXoE85YOxShChDJRRAqiD7+JACKhlXzjitF3RbIbBzRi1pjQjmI5CIIFUR/7SSyWh7Ia1fNyg8yuQJlo07/GxrTWjscoZITyUUQKoCkK8SQGIOyoV+ZDwtXZkoff9AVor8uhsaEBxPJRRAqgD7xLBj1KBtUzSGx2xT1WiLTOKCPiyp7ZaFGE8lFECqAIf4kqG1R1G1u7VAei0yuRNmoI/r4E8XTBghCKURyEQQLkyQj+munUHr7Vpmn8h9E6dMZdIUYrkdbOxShEhPJRRAszJgaVyWfyi+NwqsVaOzRiaEx4QFEchEEC9NdiQK5ospfb7lNJleibNgBffxxMTQmlEokF0GwIEmS0F+JQuHVBpnG3trhmI3KpzNoCzAknrN2KEIlJZKLIFiQMSMeKScdVWN/a4diVgqvNqC2FUNjQqlEchEEC9LHRYFMjrJRR2uHYlYyhRJlw47FQ2NGvbXDESohkVwEwUIkSUJ3JRJFvVZVrlBleah8/KEoD0NijLVDESohkVwEwUKMWdeRbqYUF3yshhRebUBlI2qNCfclkosgWEjxU+yyajckdptMqUbZsAO6q8fE0JhwD5FcBMECiu8Si0RRtzlyu9rWDsdiVE26FA+NiQcqhb8RyUUQLMCYcQ1jVhJKny7WDsWiFN6+xQ9UXjps7VCESsaiyWXr1q0MGTKEgQMHsm7dunuWx8TEEBISQmBgIDNnzkSvL3lqvWTJEr7++mvT69jYWMaMGUNwcDDPPvssMTHFFxITExPp0KEDwcHBBAcHM2HCBEseliCUSXfpEMgVqJp0tXYoFiVTKFE16Yr+6nEkbYG1wxEqEYsll5SUFBYvXsz69esJDQ1lw4YNXL58ucQ6U6dOZfbs2ezYsQNJkti4cSMAOTk5zJgxg9WrV5dYf9asWUycOJGwsDAmT57Mhx9+CEB0dDTDhg0jLCyMsLAwVq5caanDEoQySUYD+suHUTZoXy3vEvs7ZdPuYNCiv3rc2qEIlYjFksuhQ4fo1q0bTk5O2NnZERgYSHh4uGl5YmIihYWF+Pn5ARASEmJavmfPHho1asRLL71Uos2nn36a3r17A9CiRQtu3LgBwJkzZ7h48SLBwcGMGzeOCxcuWOqwBKFMhsSzSAU3UTbrYe1QKoTCoykyR1d0lyOsHYpQiVgsuaSmpuLm5mZ67e7uTkpKSqnL3dzcTMtHjBjBq6++ikKhKNFmSEiI6b2lS5fSv39/ADQaDcOHD+fXX39lwoQJvPXWW2i1YqY8wTp0lw6Bxr7a1BIri0wmQ9WkG4bEsxjzb1o7HKGSsFj9b6PRWGLGPUmSSrwua3lpJEni888/59SpU/z4448AvPPOO6blAQEBLFq0iLi4OFq2bFmuWF1cqv/Qxd+5uTlaO4RKw5x9YSwqIP7qcRx9n8DN09ls7VaEx+kHbZf+XD/5GzYpJ6ndJciMUVU88d2443H6wmLJxdPTk6ioO3WH0tLScHd3L7E8LS3N9Do9Pb3E8vvR6/V8+OGHpKSk8OOPP+LoWHzga9asISgoiDp16gDFCUipLP+hZWTkYjRK5V6/qnNzcyQtLcfaYVQK5u4L3cWDSHot+vqdq1QfP34/OCF3aUjWyX1oGweYLa6KJr4bdzyoL+RyWZk/yi02LNajRw8iIiLIzMykoKCAnTt30qdPH9NyLy8vNBoNx44dAyAsLKzE8vtZsGABubm5rFq1ypRYACIjI9m0aRMAR48exWg04uPjY4GjEoQH0104gMzRDYVHU2uHgiRJFOkM5Bfq0BuMFt+fqlk3jGlXMN5Mtvi+hMrPYmcuHh4eTJkyhXHjxqHT6Rg1ahTt2rVj4sSJTJo0CV9fXxYuXMisWbPIzc2lTZs2jBs3rtT2MjMzWbduHd7e3jz99NOm98PCwpg5cybTpk0jLCwMjUbDokWLkMvFIzxCxTJkJmK4cQF1l2fKNcRrbrkFOk5cSuPCtWyuJueQll2ATn8nqdjbKHGvY0ejuo60qO9E28Yu2NmY70+Askk3ig5vRHcpAo3/SLO1K1RNMkmSas54UCnEsFjNZc6+KDy4Bt2FP7Efsxi5TcWN28cm3WTH0QSOX0jDKEnUslPhU682Hs62ONqpUcplFOoMZOdqSc7I40pyDkVaAwq5jI7N3ejX0YueHeuTnp772LHk/7YAY24G9s8usEqCfVziu3HH4w6LVf0JvQWhEpC0Begu/YXSp2uFJZaUrHw2/nGZE5fSsdMoGdDZm26tPWng4fDAP+wGo5G4pFtEnU/jUPQNIs+nUn/PZYZ0bUCXVu6PlRRUzXpQ+OdKjCmXUXg2e+R2hKqvXMnlnXfe4fnnn6dHj5px374gPCzd5QjQFaJu08/i+zJKErsjE9iyPw65XEZIHx/6+3tjoy7fb0WFXE4zbyeaeTsREuDD0ZgU9p5IYvl/z7IzMoFn+zWleX2nR4pN2dgf/lqL7uIBkVxquHJdmBgwYADffvstgYGBrFy5kuzsbAuHJQhVhyRJ6M7+gdy1IXI3y95Ikleo4+tNp/n5j8u0buTMvIndCOrRqNyJ5e80KgW929VjyT+e4OUhrcjKKeRf646z8vdzFBQ9fKVjmdoWpU9ndLFHkXRFjxSTUD2U6xM5fPhwhg8fTmxsLJs3b2bUqFF06NCBsWPH0q5dO0vHKAiVmiH5Isas69j0edmi1xnSsgtYvPEUadkFjBnQnH4dvcy2P4VcRq92denc0p3fIq6y7XA85+OzeSWoFS0a1HmotlQteqO/eBD9lShUzXuaJT6h6in3LVVGo5H4+HiuXr2KwWDAxcWFf/7znyxdutSS8QlCpac9+TsyG0eUTS1XpDIxLZd5a46Rk6/l/ef8eLKTt0USmUat4KmAJkx/oRMKhYzP158g9EAcxoe470fh2RxZLQ90F/abPT6h6ijXmcvixYvZsmUL9evXZ/To0Xz11VeoVCry8/Pp27cvkyZNsnScglApGdKvYkg4jbrzU8iUGovs43paLp+vP4FCIWP6C52o52pvkf3cralXbf75UmfW7brIf/+6yvW0PF4JalWu4TeZTIaqRS+0kZsx3kpFXuvBD0cL1VO5zlwyMzNZsWIF69evJygoCJVKBYCdnR2LFi2yaICCUJlpj28FtS3qNk9apP207AIW/XwSpULGtNEdKySx3GajVvLykFY892QzTlxK47M1x0m/Wb6y+qpmPUEmQ3fhgIWjFCqrciUXg8FwT52u22crvXr1Mn9UglAFGDIT0V89hrrtAGRqO7O3n1ugY9GGk+gNRt57rgMezubfR1lkMhkDO9dnyjPtybhVyPy1x7mRkVfmdnIHZxTebYvL4RgNFRCpUNk88Bz3448/JiUlhWPHjpGZmWl6X6/Xk5CQYPHgBKEy0578DZQa1G0Hmr1to1FieVg0mbcKmfp8B7wq8Izlfto2dmH6mI4s3HCSf607znvP+tHA48HP86haPkHhrq/RXzuFqlHHCopUqCwemFxGjRrFpUuXuHDhAoGBgab3FQqFaR4WQaiJDNlJ6GMPo/INtMiEYJv3x3L2ahYvDm5JM28ns7f/KLzdHZg2piMLfz7B5+tPMOXZ9jSpV7vU9ZUN2yOzc0IXs08klxrogcnF19cXX19fevbsiYeHR0XFJAiVXtHhDaC0Qd1+iNnbPhqTwvbD13jCrx592tcze/uPw9PZrjjB/HSSxRtO8eGYjtR3v39ylcmVqFoGoD3+X4y30pDXcrvvekL19MBrLu+++y4Ar7zyCsOGDbvnP0GoifTXz2K4dgp1h2HIbWuZte3kzHxWbztPE69aPN+/uVnbNhfX2ra8/7wfGrWCRRtOkpKZX+q6qpZ9QAa6839WYIRCZfDAM5eJEycC8NFHH1VIMIJQ2UlGI0WHf0bm6Iq6bX+ztm0wGlmx9RxKhYw3R/iiUlbeyt6utW15/zk/5q89zsKfTzL9hY4417K5Zz25gwvKBn7oLuxH3WkEMoUoZ1hTPPDT27ZtWwC6dOlC3bp16dKlC/n5+URGRtKqVasKCVAQKhPdxQMYMxPQdH0GmVJt1rZ/j4jnyo1bjA1sQR1HyzwzY051Xez5x7PtySvUsXjjqVLLxaha9UUquIX+6rEKjlCwpnL9NJo9ezYrVqwgNjaWWbNmcf36dWbMmGHp2AShUpEKc9Ee3YTcoynKxp3N2vbV5Fts/esqXVt70KVV1bm+2cizFm+H+HIjI5//CzuLwXjvpGQK77bIHN3Qnd1jhQgFaylXcomOjuaf//wnu3btYuTIkcyfP5/ExERLxyYIlUphxHqkonxseo0za+kVnd7Aiq3ncLRTMWZA5bzO8iCtGznzQmBzzsRlsOGPy/csl8nlqNs8iSH5Iob0eCtEKFhDuZKLJEnI5XL++usvunXrBkBhYaFFAxOEykR/7RT6S4dQdxiKwqWBWdv+PSKeGxn5vDykFQ62KrO2XVGe8PNiYOf67I66zt7j1+9ZrmrRG5QatNE7rRCdYA3lSi4NGjRg4sSJXL9+nS5duvDee+/RokWLMrfbunUrQ4YMYeDAgaxbt+6e5TExMYSEhBAYGMjMmTPR60uO2S5ZsoSvv/7a9PrWrVu8+uqrDB48mDFjxpCWlgaAVqtl6tSpDB48mJEjRxIbG1uewxKEcpG0BRQe+AF5nXqoO5j3LskbGXlsOxxPtzYetPVxMWvbFe2Zvk1p18SF9bsvcfn6zRLLZBp7VM17ob98BGP+zVJaEKqTciWX+fPnExQUxJo1a1CpVPj7+/PZZ589cJuUlBQWL17M+vXrCQ0NZcOGDVy+XPKUeerUqcyePZsdO3YgSRIbN24EICcnhxkzZrB69eoS6y9ZsgR/f3+2b9/O008/zbx58wBYs2YNtra2bN++nRkzZjB9+vRyd4AglKXo8E9IeVnFJfUV5juzkCSJtTsvolIqeLZf1Z9YSy6X8eqw1rjUsuHb0DPczNOWWK5u2x+MenQxe60UoVCRypVc7Ozs8Pf359atW5w9e5Z27doRFxf3wG0OHTpEt27dcHJyws7OjsDAQMLDw03LExMTKSwsND3pHxISYlq+Z88eGjVqxEsvvVSizX379pmerwkKCmL//v3odDr27dvH8OHDAejcuTOZmZkkJSWVrwcE4QF0lw+jO78ftd8QFB5Nzdr24XMpxMRnMeqJJtS2N++dZ9ZiZ6PizZFtyS/UszwsusQFfrlTXRT126E79weSQWfFKIWKUK6bzr/66itWrVqFi8ud03aZTMaePaXf/ZGamoqb250nct3d3Tl9+nSpy93c3EhJSQFgxIgRACWGxP6+jVKpxMHBgczMzPu2lZycTL16levpZqFqMWYnU3jgexQezVD7h5i17bxCHRv2XMKnXi0C/KrX57SBhyNjA1uw8vcYtvwZx9N97yRlte9ACrYtRB97BFVzUfS2OitXcgkLC2Pnzp0PVQLGaDSWuKNGkqQSr8taXh63bzT4+7a33y8vFxfz14aq7NzcHlx0sCa5X18Y9VqSQv8PuVKF1zPvo6zlZNZ9hoadIbdAx5zXeuDhbt6n/B+VOT8TI/o5cj0jn+2H4+ne3osOLYrndJFcu5EY1RBDdDh1ewQik1W+B0XFd+OOx+mLciWXunXrPnRtMU9PT6Kiokyv09LScHd3L7H89gV5gPT09BLL78fd3Z309HQ8PT3R6/Xk5eXh5OSEh4cHqampNGjQoNxt3S0jIxejsfwz7VV1bm6OpKXlWDuMSqG0vig88AO61KvYDppCVpEGzNhfNzLy+P3gFXq3r0ctjaJS/FtY4jMxomcjzlxOZ9G6Y3wyoQu17IqH/uRtAinc+x3Jxw6ibNjBrPt8XOK7cceD+kIul5X5o7xcPxu6d+/O559/zrFjxzh79qzpvwfp0aMHERERZGZmUlBQwM6dO+nTp49puZeXFxqNhmPHip/aDQsLK7H8fgICAggNDQVg27Zt+Pv7o1KpCAgIICwsDICoqCg0Go0YEhMemS72CLqYvajaDUbZoL3Z29/4x2VUSjkje/uYve3KRKNS8NrwNuQV6lj9ewzS/6ZKVjbpiszBBe3JbVaOULCkcp25bNmyBaDEBfmyrrl4eHgwZcoUxo0bh06nY9SoUbRr146JEycyadIkfH19WbhwIbNmzSI3N5c2bdowbty4B8bx7rvvMm3aNIYOHYqjoyMLFy4EYOzYscyePZuhQ4eiVqv5/PPPy3NYgnAP480UCvevRu7RFE2Xp8ze/tkrmZyKzeDpvk2oVU0u4j9IfXcHnn6iKT/tucTeE4n06+iNTK5A3W4QRYfWoU++hNKz6t8pJ9xLJt3+OVGDiWGxmuvuvpD0WvLD5mHMTcf+qTnIHcz73InBaOSfqyPR6gzMfaVbpSpMacnPhCRJLPnlNOevZfHReH+83RyQdEXkrX8PuUdT7AZNtsh+H4X4btxRIcNieXl5zJkzh/Hjx5Odnc3s2bPJyyt7qlNBqEqKDm/AmBGP7ROvmD2xABw8fYPEtDye6du0UiUWS5PJZLw8tBW2agXL/3sWrc6ATKVB1bY/hmsnMWRcs3aIggWU6xM+d+5cHB0dycjIQKPRkJuby+zZsy0dmyBUGF1cJLpze1C1G2SRi8xFOgOhB6/Q1Ls2HZvXvEmzatureXloaxLT8tiyv/gZOXXbAaC2RXsszMrRCZZQruQSExPDlClTUCqV2NrasnDhQmJiYiwdmyBUCOOtVAr/XIXc3QdNl1EW2cfuqARu5moZFdDErEUvq5J2TVx4ooMXuyITuHQ9G5nGHnXbgeivHhMFLauhciWXvz8zYjAYHuo5EkGorCSDjoI9y0Amw/bJN5HJzT+ZVW6Bjm2Hr9G+iQvN6zuZvf2q5OknmuBS24aVv8dQpDOg9h1YfPZyXJy9VDflyhCdO3fmiy++oLCwkAMHDvD222/TtWtXS8cmCBaXtX8jxrQr2ARMQO7oapF9bIuIp7BIz1MBTSzSflViq1Hy0pBWpGYVsPnP2OKzF99A9FePi7OXaqZcyeX999/Hzs4OR0dHlixZQsuWLfnggw8sHZsgWJQ+KYbsQ7+iahmAqnEni+wj81Yhu49dp0dbT7zda14liPtp1bAO/Tp6sSfqOheuZf3v7MUO7bFQa4cmmFGZyWXXrl2MHTuW//znP1y/fh1HR0c6duyIRlP5p2EVhNJIRXkU7l2Byrkumu6jLbaf0INXAIng3o0tto+qaNQTTXB1smHVthi0aFC3C0QffwJD+lVrhyaYyQOTy/bt2/niiy944YUX+OWXX1i7di0jRoxg3rx57NwpJv0Rqq7Cv9Yi5d/EPfhdZCrL/FBKTM/jrzM36NfRG9fathbZR1Vlo1by8pBWpGUXsmlfbPGdYxp7iqJCrR2aYCYPvHr5448/8v3335copdKkSRPat2/PjBkzGDhwoMUDFARz0187if5yBOqOwWjqNTVr3bC7bfkzFhu1gqHdG1qk/aquRYM69O/kze5j1+ncyp2GvoFoo7ZgSI1F4S6uT1V1DzxzycvLu2+NrsaNG1NUVGSxoATBUopnlfwReR0vs88qebfYxJucuJTOoC4NcLSr/mVeHlVIgA8utWz4Ifw8spZPIrOtRdGRjYjCIVXfA5OLQqEodZn4xxeqoqKjvxTPKhnwMjKF+W87vm3L/jgc7VQM6FzfYvuoDmzUSsYNasGNjHy2HUtB3TEYw40LGK6dsnZowmMSD6sINYY++RK6c3+g8h1o0WGXs1cziYnPIqh7I2zUlktg1YWvjwvd23jwe0Q8Ka7+yGp7FP8IuGsWS6HqeeAn/8KFC3Ts2PGe9yVJQqvV3mcLQaicJKORor/WIrN3RmPmWSVL7EeS2PJnLM61NDzRwcti+6lunnuyGWfiMvlhxyWm9ngK7R/for94EFXLB0/DIVReD0wuu3btqqg4BMGidBf2Y8yIx+bJNyx2dxjA8YvpXLmRw0uDW9ao4pSPy9FOzfP9m7Fi6zkOZDeju7sPRcd+Rdm0KzKleOyhKnpgcvHyEr+8hKpPKspDe3QTirotUPp0sdh+jEaJXw/E4elsRw9fT4vtp7rq1tqDiLPJbP4zDt/hT2G39wu00bvQ+AVZOzThEYifVkK1VxT1K5I2D02PMRYtGhlxNpmk9DxG9vFBIWrvPTSZTMa4wBYA/HRSj7x+e7QnfsdYKOZXqYrEN0Co1ozZycUX8Vs+gcKlgcX2ozcYCTt4hYYejnRqUfNK6puLa21bRvbx4XRsBqdcBoG+EK14sLJKEslFqNaKoraAQoXaf6RF9/PnySTSbxYSEuCDvIaW1DeX/p28aVzXkZ8j0ilq+iS6mL0YMhOtHZbwkCyaXLZu3cqQIUMYOHAg69atu2d5TEwMISEhBAYGMnPmTPR6PQBJSUmMGTOGQYMG8cYbb5hmvQwJCSE4OJjg4GACAwNp3bo16enpJCYm0qFDB9OyCRMmWPKwhCrCkH4VfdxR1O0CkdvWsth+irQGth66SvP6TrRt7Gyx/dQUcrmMFwe3Ir9Qz39z24HKhqKI9eLZuirGYsklJSWFxYsXs379ekJDQ9mwYQOXL18usc7UqVOZPXs2O3bsQJIkNm7cCMAnn3zC6NGjCQ8Pp23btnz77bcAbNmyhbCwMMLCwmjfvj2TJk3C1dWV6Ohohg0bZlq2cuVKSx2WUIUUHd0EGnvU7QZZdD+7jyVwK0/LUwE+NXYiMHOr7+7AwC71OXg2nWuNR2BIPCserKxiLJZcDh06RLdu3XBycsLOzo7AwEDCw8NNyxMTEyksLMTPzw8oPisJDw9Hp9MRGRlJYGBgiffvFhERwfnz55k4cSIAZ86c4eLFiwQHBzNu3DguXLhgqcMSqgh9UgyG69FoOgQhU9tZbD/5hTq2H75GuyYuNPN2sth+aqLgno1xqWXDTxdrYaxVl8LDPyEZ9NYOSygniyWX1NRU3NzuXNh0d3cnJSWl1OVubm6kpKSQlZWFg4MDSqWyxPt3W7p0KVOmTDGVp9FoNAwfPpxff/2VCRMm8NZbb4mHPGswSZLQRm5BZl8HVesnLbqv7UeukV+kJ6SPj0X3UxNp1ArGDGxOUkY++2sPR7qZgu7sHmuHJZSTxWpTGI3GEkMEkiSVeF3a8r+vB5R4fenSJbKysujbt6/pvXfeecf0/wEBASxatIi4uDhatmxZrlhdXGreJE5ubo7WDsFiCq6eITflEi6BE6ld16XM9R+1L7JyiicC6+PnRae29xZ4rWoq42digJsjkRfS+P1sCv6tuiA/EYZntwEo7GtbbJ+VsR+s5XH6wmLJxdPTk6ioKNPrtLQ03N3dSyxPS0szvU5PT8fd3R1nZ2dycnIwGAwoFIp7ttu9ezdDhgwpsa81a9YQFBREnTp1gOJEdfvMpzwyMnIxGmvOxUI3N0fSLFRmvjLI37sBmZ0TRV6dyzzOx+mLtTsvoNMZGdylfpXvz8r8mXiqd2OOX0jlp+xOvFIURdKONdj0Hm+RfVXmfqhoD+oLuVxW5o9yiw2L9ejRg4iICDIzMykoKGDnzp306XOnTpCXlxcajYZjx44BEBYWRp8+fVCpVPj7+7Nt2zYAQkNDS2x38uRJ/P39S+wrMjKSTZs2AXD06FGMRiM+PmKYoibSJ1/CkBSDut1gZErLlbq/kZHHnyeT6ONXDw9ny13TEcC5lg0hfXyITsjjjPsQdOf3YchMsHZYQhksllw8PDyYMmUK48aNY8SIEQQFBdGuXTsmTpzImTNnAFi4cCHz589n0KBB5OfnM27cOAA+/vhjNm7cyJAhQ4iKimLy5MmmdhMSEvDw8Cixr5kzZ3Lo0CGCgoJYsGABixYtQi6ekK6RtCf+i8zGEVWrJyy6n037YlEp5YzoJaYvrghPdvSmoacjm655UKCsRdEhcWtyZSeTxL+QGBarJgxpV8j/9RPUXUaVux7Vo/TFhWtZLFh/gpA+PgT1aPQIkVY+VeEzcTX5Fp/+EEWfBhIhOWuw6f8WKp/OZt1HVeiHilJph8UEoaJpT20HtS1qC94hZpQkNvxxmTqOGjERWAVr5FmLJzt6sz9exjW7VhQd/hlJL2bEraxEchGqBWNuBvorUahaPoFMbWux/Rw9l8LV5ByeCvBBoyp9plbBMkb28aG2g5qNed3R52SiPbnN2iEJpRDJRagWtNG7AVC37W+xfej0Bjb/GUsDDwe6tREl9a3BVqNkdP/mJGTpOWg/EO2p3zHeSit7Q6HCieQiVHmSrhDd+T9RNu6E3KHs51oe1e6o62TcKuLZvk1FcUor6tTCjXZNXPg9pS6ZRgeKDv9s7ZCE+xDJRajydBf/Am0+6rYDLbaPW/lafou4SvsmLrRqJIpTWpNMJuOFAc2RJAhVDEF/9Rj669HWDkv4G5FchCpNkoxoo3chd2uM3KOpxfazaV8sWp2RZ/pZbh9C+bk62RLcqzGnUpWcUbSh6NA6UXeskhHJRajSDAlnkG4mo/YNtFhF4tikmxw8fYMBnetT18XeIvsQHt6AzvXxcrNnS15nCrLS0J3dbe2QhLuI5CJUadozO5HZOaH08S975UdgNEqs3XkRJwc1w6rJMy3VhVIhZ1xgCzLzjexUPknRsVCM+dnWDkv4H5FchCrLkHkdQ+JZVG36I5Nbpkze/lNJxCfn8Ey/pthqLFaKT3hEzbyd6N2uLnszPEgqsqPo6C/WDkn4H5FchCpLF72zeApjC5V6ycnXsvnPWFrUd6JrK4+yNxCs4um+TbHVqNgkBaK98BeGlMtlbyRYnEguQpVkLLiF7tIhVM16IrOxzJQJP++5TKHWwJiBzcUMk5WYg62Kp/s2IfamiqP4UnhoHZJktHZYNZ5ILkKVpIvZBwY9Kt8BFmk/Oi6DiLPJDOnWEG+3mjffT1XT07cuzb1r89+8DtxKSUJ34YC1Q6rxRHIRqhzJoEd37g8U3m1R1PEye/uFWj0/hF+grotdtSlMWd3JZTLGBragUC/jN6kv2qObkIryrB1WjSaSi1Dl6OOOIuVno/a1zEOTW/bHkXGrkBcHt0SlFF+RqsLLzYGBXeoTcdOdyzm2FB0LtXZINZr45ghViiRJaM/sRO5UF4V3W7O3f/n6TfZEXadvRy+aeTuZvX3Bsob3aIxLLRt+MTxJYfQfGDKvWzukGkskF6FKMaRcwph+FVXbAchk5v34FhTpWfHbWVxq2zAqoIlZ2xYqhkatYMyA5tzIV7FP1674yX0xZZVViOQiVCm6MztBY4+qeU+zt/3znkukZxfySlBr8UxLFebXzJUOzVwJz29LWsI19FcirR1SjSSSi1BlGHPS0F89hrrVE8iUGrO2ffxiGgdO32Bwt4Y0r+9k1raFije6f3OQK9ii70NRxM9IOjGpWEWzaHLZunUrQ4YMYeDAgaxbt+6e5TExMYSEhBAYGMjMmTPR64sLzyUlJTFmzBgGDRrEG2+8QV5e8V0fR48epWvXrgQHBxMcHMz06dMB0Gq1TJ06lcGDBzNy5EhiY2MteViClWjP7gFkqMw80+TN3CK+336eBh4OjOjd2KxtC9bhUtuGEb18OJPnxukse7Snfrd2SDWOxZJLSkoKixcvZv369YSGhrJhwwYuXy755OzUqVOZPXs2O3bsQJIkNm7cCMAnn3zC6NGjCQ8Pp23btnz77bcAREdH8/LLLxMWFkZYWBjz588HYM2aNdja2rJ9+3ZmzJhhSjpC9SFpC4rnbPHpjNzBfCXvDQYjy/97Fq3OwMRhbVAqxMl8ddHf3xsvN3s2a3uRc3Inxlup1g6pRrHYN+nQoUN069YNJycn7OzsCAwMJDw83LQ8MTGRwsJC/Pz8AAgJCSE8PBydTkdkZCSBgYEl3gc4c+YMBw8eZNiwYbz++uvcuHEDgH379jF8+HAAOnfuTGZmJklJSZY6NMEKdBcPgrbA7Lcfrw0/z/lr2YwNbIGXq6h4XJ3cLmyZpVURnu9LUcRP1g6pRrHYVcvU1FTc3NxMr93d3Tl9+nSpy93c3EhJSSErKwsHBweUSmWJ9wEcHR0ZPHgwAwcO5KeffmLKlCn8/PPP920rOTmZevXqlStWF5ea9wS2m5ujtUMoN0kykhCzB41Xczzb+Jmt3SPRN9j0xyUCuzVkRL/mZmu3qqpKn4nycnNzZMDFdPZESnSO3UrHW5exa9KhzG2EYo/TFxZLLkajsUQ9JkmSSrwubfnf1wNMr+fMmWN67/nnn2fRokXk5OTcs40kScjl5T8py8jIxWisObcrurk5kpaWY+0wyk0ffwJ9VjLKjiFmizs1K59F64/TxLs2Ib0aVan+sISq9pl4GMO6NyTiTBK/FPWm7u/f4fj0XGRK9X3Xrc798LAe1BdyuazMH+UWGxbz9PQkLS3N9DotLQ13d/dSl6enp+Pu7o6zszM5OTkYDIYS2xmNRpYtW2Z6/zaFQoGHhwepqan3tCVUD9ozO5HZO6Ns3Mks7eUX6vhq02nkMpg2rjMqpcIs7QqVU3Fhy6bEFdXhcHottCd/s3ZINYLFkkuPHj2IiIggMzOTgoICdu7cSZ8+fUzLvby80Gg0HDt2DICwsDD69OmDSqXC39+fbdu2ARAaGkqfPn2Qy+Xs2rWLHTt2mN5v3749dnZ2BAQEEBYWBkBUVBQajabcQ2JC5WbISMCQFPO/OVsePwnoDUa+DY0mNauAt0b64ilmlqwRbhe23FrYlczjuzFki2uylmax5OLh4cGUKVMYN24cI0aMICgoiHbt2jFx4kTOnDkDwMKFC5k/fz6DBg0iPz+fcePGAfDxxx+zceNGhgwZQlRUFJMnTwZgwYIF/PjjjwwdOpTNmzczd+5cAMaOHYtWq2Xo0KHMmzePzz//3FKHJVQw7ZkdoFSjbtmn7JXLIEkS63Zd5NzVLMYNakHLhnXMEKFQFZgKW0oK/lvQiaKDa8ST+xYmk0QPi2sulZQxP5u89e+havUENj3HPnZ7v0dcZfOfcQzp1pBRTxSXd6kqfWFpNaUfftl3me2HrzHJMZw2A0egatajxPKa0g/lUWmvuQjC49JF7wajEbVv4GO3tfdEIpv/jKNraw9CAnzMEJ1QFRUXttTwS1Fv8g79LMryW5BILkKlJOmK0MbsRdmoI/Jaj3dzxuGzyazdcYH2TVyYMLQVcjGrZI1VXNiyBTe09uy92YCio79YO6RqSyQXoVLSXTgARXmo2g16rHaOX0zjP7/F0KKBE2+MaCuewBfuFLYs7EBydCSGlMtlbyQ8NPFNEyodyWhEe2YHcncfFB5NH7mdozEpLAuNplFdR955qh1qlbjlWCg2un9zZHIFW4p6UnjgeySD3tohVTsiuQiVjj7+OFJOGup2g+55oLa8/jpzg+X/PUuTerV471k/UUJfKMGltg0jevsQXejJqWQZ2pOisKW5ieQiVDra0+HIHF1RNnq0hyb/OH6dVb/H0KphHaY8IxKLcH8lClse34YhM8HaIVUrIrkIlYoh5TLGlMuo2w586IcmjZLEpn2xrN15kXZNXHh3VDs0ajEUJtxficKWhR0p3LcSyWgoe0OhXERyESoV7antoLZD1aL3Q22n0xv5z9ZzbDsczxMdvHj7KV9R1kUoUzNvJ3q3q8u+/GZcT87m5uH/WjukakMkF6HSMGReL55psm1/ZGrbcm93M0/Lop9PcPhcCk8F+DB2YHMUD1G4VKjZnu7bFDsbFb8Y+pPx5wZRGsZMxDdQqDS0J38DpQZ12/LP2XLlxi3mfB/J1eQcXg9uw9DujR75JgChZnKwVfFM36bE5dlxVN+cwj9XIRmN1g6ryhPJRagUjDdT0MceQdW6LzKb8s2vc/D0Df617jhymYwZYzvRpZWHhaMUqquevp40967Nfwv8uXnjuqicbAYiuQiVgvbU7yBXoC7HQ5MFRXpWbD3Lqm0xNKlXi49e9KeBh5jgSXh0MpmMsYNaUqiXsVk2CO2xMAypcdYOq0oTyUWwOmNuBrqLf6FqEYDczumB615NvsUn30dy+FwKI3o35v3nOlDL7v4TPwnCw/Bytef5gS04kVWLk7SkYO93SLoia4dVZYnkIlid9njxHTpqvyGlrmOUJHZGJjDvx2Po9EY+HN2R4T0bI5eL6yuC+TzVtykNPR3ZlNeZnKxsig7/bO2QqiyRXASrMt5MQXfhAKpWfZE7uNx3ndTsAhb+dIKf91yiXRMXPnm5C83rO1VsoEKNoFDImTCkFflaiS2q4ehi9qKPP2ntsKokkVwEqyo69isolKg7BN2zzChJ7Dl2ndkrj3A1OYfxg1rwdogvDrYqK0Qq1BTe7g4M79mIY2k2nFZ3pPDPlRjzsqwdVpUj6mIIVmPITEB/+QhqvyH3XGtJycpn9bbzXEzIpq2PMy8OaolzLRvrBCrUOIO7NeT4xXQ23myPj/1F5H/8H7ZDPzDLVNs1hUXPXLZu3cqQIUMYOHAg69atu2d5TEwMISEhBAYGMnPmTPT64sqkSUlJjBkzhkGDBvHGG2+Ql1c8oU9sbCxjxowhODiYZ599lpiYGAASExPp0KEDwcHBBAcHM2HCBEselmAm2sgtoLZB3W6w6T2d3sB/D15h9sqjJKTm8vKQVkx5ur1ILEKFUirkvDy0FflFRrbYjEKfdAFt5GZrh1WlWCy5pKSksHjxYtavX09oaCgbNmzg8uWS8yZMnTqV2bNns2PHDiRJYuPGjQB88sknjB49mvDwcNq2bcu3334LwKxZs5g4cSJhYWFMnjyZDz/8EIDo6GiGDRtGWFgYYWFhrFy50lKHJZiJPuk8+vgTqNsNNj3XciYug49WHiX04BX8mroy95Wu9GpXVzwUKVhFfXcHhvdqzLHrRk64DkF7apu4/vIQLJZcDh06RLdu3XBycsLOzo7AwEDCw8NNyxMTEyksLMTPzw+AkJAQwsPD0el0REZGEhgYWOJ9gKeffprevYtrTrVo0YIbN24AcObMGS5evEhwcDDjxo3jwoULljoswQwko5GiiPXI7J1Rtwsk42Yh3/56hsUbTyGTyXjvOT/eGNGWOo4aa4cq1HBDuzWkuXdtNsR7kFmrBQX7VmDMSbN2WFWCxZJLamoqbm5uptfu7u6kpKSUutzNzY2UlBSysrJwcHBAqVSWeB+KE41CUTzmuXTpUvr37w+ARqNh+PDh/Prrr0yYMIG33noLrVZrqUMTHpPuwn6MGdcwdnqGLX9dZ/p3hzkVm8HIPj7MebkLbRo5WztEQQBALpfxyrDWyGQy1hQ8gcEoUbD7WyS9+PtSFotd0DcajSWGMyRJKvG6tOV/Xw+4Z73PP/+cU6dO8eOPPwLwzjvvmJYHBASwaNEi4uLiaNmyZblidXEpX7mR6sTNzTpPtBsL87gS9SuRdn34bbeem7nxPNHJm7GDW+Fex84qMVmrLyob0Q/F/t4Pbm6OvP10e75Ye4yDHV8k4Oq3ELkO12HvVPsh28f5TFgsuXh6ehIVFWV6nZaWhru7e4nlaWl3Ti/T09Nxd3fH2dmZnJwcDAYDCoWixHZ6vZ4PP/yQlJQUfvzxRxwdiw98zZo1BAUFUadOHaA4Ad0+8ymPjIxcjEbpsY63KnFzcyQtLafC9ytJEsd/38Lm5ACSDU4097Zl0lPtaFy3FugNVonJWn1R2Yh+KFZaP7Tyrk3Ptp78ejwZ706jaHJmE1pbNzR+995CX1086DMhl8vK/FFusWGxHj16EBERQWZmJgUFBezcuZM+ffqYlnt5eaHRaDh27BgAYWFh9OnTB5VKhb+/P9u2bQMgNDTUtN2CBQvIzc1l1apVpsQCEBkZyaZNmwA4evQoRqMRHx8fSx2a8AguJ97kizUR/Du6DgaVPW+N9OXDMR2LE4sgVAEvDGxBPVd7Vp2rTY53T7RHN6O7eszaYVVaMkmSLPaTfevWrSxfvhydTseoUaOYOHEiEydOZNKkSfj6+nL+/HlmzZpFbm4ubdq0Yf78+ajVahITE5k2bRoZGRnUrVuXL7/8EoPBQK9evfD29sbW9s5cH2FhYaSkpDBt2jTS0tLQaDTMmzev3ENiIM5cLCk+OYdfD8RxOjYDR4WWAQ4XCBz/Miq7yjEEI36xFxP9UKysfriRkcecH6LwdrXjbYftyLMTsQueicKlQQVGWTEe98zFosmlqhDJxfyS0vMIPRBH1IU07DRKBjTIp2f6JmoPfANV404W3ffDEH9Ui4l+KFaefog8n8qy0GiebO9GcOYqQIbdyNllFl2tah43uYgn9AWzSs0uIOzAFQ6fS0atUjCsRyMGtNAg/fYxSh+/SpVYBOFRdG7pzmX/+uyKSqBer5fwv/hvCrYtwm7YNGQae2uHV2mI5CKYReatQrYeusrB0zeQy2UEdm7A4G4NcNDIyA+bh6TUoOn5grXDFASzeKZfE25k5rH+UAZu/V6j4cl/UxC+BNuh7yNTiuezQBSuFB7Tzdwi1u++yLTlhzl4+gYBfvVY8Hp3nunXFEc7NUVHfsGYfhWbgJer3bCBUHMp5HJeH94WT2c7/u9ALjc7T8SQcpmCXf9GMuqtHV6lIJKL8Ehu5mn5ec8lPvy/CP44lki3Nh7Mf60bLwxsgZND8S83ffwJdNE7UbXpj6qRGA4Tqhc7GyWTRrVDoZDxTYREof9YDAmnKdy3EkkyWjs8qxPDYsJDuZmnJfxIPHuPJ6IzGOnRxpOgHo3wcC75AKQxJ53CfSuRuzRA0/UZK0UrCJbl5lT8rNbCn0+y9IQ9U9o/Bac2U6RUoen9IjJZzf39LpKLUC5/Tyrd23gy7D5JBUDS5lMQvhhJMmD35JvIlGIaYqH6auJVm3ee8mXJL6f593lPJvkOQ3dmK5LRgE2fCcjkNTPBiOQiPNCtPC3hR67xx/HrZSYVAMlooGD3txizk7Ed8h5yJ88KjlgQKl7rRs68MaIN/94SzTJlY95oPxL9qV8pNBqweeIVZPKa96e25h2xUC638rSEH/1fUtEb6dbak2E9G+FZSlKB4vIuRX+twXA9Gk2fl1B6ta7AiAXBujo0c2PisNas2HqOpfp6vOk3Ck5uoqAoH9v+byJT1aw5iURyEUq4N6l4ENSjEXVdHnz/viRJFEWsRxezD7XfUNQtAyooYkGoPLq29kCtkrMs9Cxfal2Z5D8eu2M/kv/bAmwHTUFuW3PKHYkn9BFP6AOk3yxgx5EE9p9OQm8of1KBuxJL9C5UbQei6f58lakWK55MLyb6oZi5+uHCtSyWbj6NrUbJm901uB3/DpldLWwHvIPCtaEZIrU8Uf7FDGpycklKz2P74XgOnyueM6d7W08Gd21QrqQCIBn1FP21Fl3MPlS+gWi6PVdlEguIP6q3iX4oZs5+iE/OYenm0+QW6Bjbwxm/K6uRCvOwCXgJVdPuZtmHJYnyL8IjiUu6xfYj8Ry/kIZKKadvRy8GdWnwUHPVS0V5FOz+N4bEc8VDYZ1HVanEIgiW1NDTkY9f7Myy0GhW7U+nX7uXGab9jcI/lmNIvoSm27PV+ml+kVxqEL3BSNSFVP48eYIL17Kw0ygZ2qMR/f29qWX3cLcLGzKvU7Dra6ScDGwCJqBq0dtCUQtC1VXLXs37z/vxy95YdkYmEOPSlxcaNsX73O8YEs9h0+81FG6NrR2mRYhhMar/sFhWThEHTyex90Qi2bla6rna07eDFz3aemKrebjfF5LRiO5MOEWRW5Bp7LAZ8A5Kz2YWitzyxHBQMdEPxSzZD9FxGazefp7s3CIGtLJnwM1NqAszUfkORNNxODK1bdmNVCBxzcUMqmNy0RuMnLyUzsEzNzgTl4EkQZvGzgzw96Zvl0ZkZOQ+dJuG9HiKDq3DkHwRZaNOaHqPr/J3v4g/qsVEPxSzdD/kF+rZuPcy+08lUctOxRCPG3TJ3o7Svjaabs+hbNKl0jzVL5KLGVSX5GIwGrl4LZtjF9M4GpNKboGOOo4aerT1pJdvXdODjw/7BTLmZlIUtRn9xUOgscOm+2iUzXpUi+sr4o9qMdEPxSqqH2ITb7Jx72UuXb+JZ20l/TRn6aiLROPihbpTMMpGHa2eZERyMYOqnFwKtXrOx2dz/GIaJy+nk1ugQ62U076pK73a1aVNI2fk8pJJoLxfIEN6PNozO9DHHgFkqNoOQNMhqFrNWSH+qBYT/VCsIvtBkiROXkrn1wNXuJ6Wi6MGetjG0kU6hbtrLVSt+qFq3gOZuvQHly1J3C1Ww2h1Bi4n3uT8tSzOx2dz5cYtDEYJW40Sv6YudGzuTlsfZzQqxSO1b8zNRB8XiS72CMa0OFBqULXqi7pdIHJHNzMfjSDUXDKZjA7N3fBr5sr5+Cx2RV1n52XYQRMaFt2iw41jtDm0nbpNmqNq4o/S27dK1emzaHLZunUry5YtQ6/XM378eMaMGVNieUxMDDNnziQvLw9/f38++eQTlEolSUlJTJ06lYyMDBo3bszChQuxt7fn1q1bvP/++yQkJODs7MySJUtwc3NDq9Uyc+ZMoqOjsbGxYeHChTRp0sSSh2ZxkiSRk6/jRkYe8Sm5XEvJ4VpKDknp+RglCblMRqO6jgR2aUCrhnVo0cAJpeLhT6ONBbcwpsWhTzqPIfEcxoxrAMhdG6Lp9hyqFr2r1ZmKIFQ2MpmMVo2cadXImfSbBUSeT+XIuRRCU2oRmg9O2fk0P3WMxprdNPR0pH7jRth4NUfuXB+ZqvLeymyxYbGUlBSef/55tmzZglqt5rnnnuPLL7+kadOmpnWCgoKYO3cufn5+zJgxg7Zt2zJ69Ghee+01hg8fztChQ/n3v/9Nfn4+U6dOZc6cOXh6evLqq68SGhrKvn37WLJkCStXriQ+Pp45c+YQGRnJF198wcaNG8sda0UOi0mShFZnpECrJzdfx818LbdytdzM03Izr4j07EJSswtIzS6gSGswbVfbXk1DT0caeDjQ1Ks2zbydyrzTS5Ik0GuRinKRCnMx5mYg3UpDo88mLyURY+Z1pLzM4pXlShQeTVF4t0HVuHONKTgphoOKiX4oVpn6ITUrn3NXszh7NYPzVzLI0xb/jVJgwFWeg4siF1dbA+61NLg6O1LLqRa16tTGsY4L9nWckantHuu6aKUdFjt06BDdunXDyckJgMDAQMLDw3n77bcBSExMpLCwED8/PwBCQkJYunQpTz/9NJGRkfz73/82vf/CCy8wdepU9u3bx7p164DixDRnzhx0Oh379u3j3XffBaBz585kZmaSlJREvXr1yhXr369JlPsYo5NJzshDb5QwGCX0Bgmj0YjeIGEwGDEYJYxGiSK9gaIiA4VaA4U6PaWlc4VCjkstDY3r1cK/pTsutW1wq21LPVc7HO96DkUyaNFF70ZbcBOMejDokQx6MOjAoAeDFqkoD0mbX/z6bwrUtijsnVE28Ufh7I28jhdy1wbIFFXnlNucHvXfv7oR/VCssvSDp4s9ni729OvkjSRJZOYUcT01l+vJWaSnZ5FxS0tcAZzPk0MekABQAFxHwTU0Mh1qmRGVwohKJqFWgFohoZKDXKFA7VyX1k088W3iUmoMpfVFefrIYsklNTUVN7c7Y/Tu7u6cPn261OVubm6kpKSQlZWFg4MDSqWyxPt/30apVOLg4EBmZuZ920pOTi53cqlT59GGfYYFNC17JUvp97T19l3NlPULrKYQ/VCssvaDq6sjzRu7Ao0qbJ+P0xcWu9fNaDSWOCWTJKnE69KW/309oNRTO0mSkMvl92xz+31BEATBOiz2F9jT05O0tDTT67S0NNzd3Utdnp6ejru7O87OzuTk5GAwGO7Zzt3dnfT0dAD0ej15eXk4OTnh4eFBamrqPW0JgiAI1mGx5NKjRw8iIiLIzMykoKCAnTt30qdPH9NyLy8vNBoNx44dAyAsLIw+ffqgUqnw9/dn27ZtAISGhpq2CwgIIDQ0FIBt27bh7++PSqUiICCAsLAwAKKiotBoNOUeEhMEQRDMz6IPUW7dupXly5ej0+kYNWoUEydOZOLEiUyaNAlfX1/Onz/PrFmzyM3NpU2bNsyfPx+1Wk1iYiLTpk0jIyODunXr8uWXX1K7dm2ys7OZNm0aCQkJODo6snDhQry9vSkqKmL27NlER0ejVquZO3cubdq0sdRhCYIgCGUQT+gLgiAIZieueguCIAhmJ5KLIAiCYHYiuQiCIAhmJ5KLIAiCYHYiudQAf/zxByEhIQwePJi5c+cCxeV5hg0bxsCBA1m8eLGVI6wYYWFhDB06lKFDh7JgwQKgZvVDbm4uQUFBXL9+HSj92GNiYggJCSEwMJCZM2ei199bQqgq+3s/bNiwgaCgIIYNG8b06dPRarVA9e8HuLcvblu7di1jx441vX6kvpCEau3atWtSr169pBs3bkharVZ6/vnnpX379kkBAQHStWvXJJ1OJ7388svSvn37rB2qReXn50udO3eWMjIyJJ1OJ40aNUras2dPjemHkydPSkFBQVKbNm2khIQEqaCgoNRjHzp0qHTixAlJkiRp+vTp0rp166wYuXn9vR/i4uKkAQMGSDk5OZLRaJQ++OADafXq1ZIkVe9+kKR7++K2S5cuSb1795ZeeOEF03uP0hfizKWa27VrF0OGDMHT0xOVSsXixYuxtbWlYcOG1K9fH6VSybBhwwgPD7d2qBZlMBgwGo0UFBSg1+vR6/U4ODjUmH7YuHEjH3/8salyxenTp+977PcrKFud+uTv/aBWq/n4449xcHBAJpPRvHlzkpKSqn0/wL19AaDVapk9ezaTJk0yvfeofSEmC6vm4uPjUalUvP7669y4cYMnnniCZs2a3VNU9HZx0OrKwcGBd999l8GDB2Nra0vnzp3vW1y1uvbDvHnzSrwu7dhLKyhbXfy9H7y8vPDy8gIgMzOTdevWMX/+/GrfD3BvXwAsWrSIp556Cm9vb9N7j9oX4sylmjMYDERERPDZZ5+xYcMGTp8+TUJCwgOLilZH58+fZ/Pmzezdu5cDBw4gl8u5evVqjeuH20orHFtWwdnqKiUlhfHjx/PUU0/RtWvXGtkPf/31Fzdu3OCpp54q8f6j9oU4c6nmXF1d6d69O87OzgD079+f8PBwFIo70yD/vahodXTw4EG6d++Oi0vx3BUhISGsXLmyxvXDbaUVli2toGx1FhsbyyuvvMLYsWN5+eWXgdIL61Znv/32G5cuXSI4OJj8/HzS09OZPHkyU6dOfaS+EGcu1Vzfvn05ePAgt27dwmAwcODAAQYNGsSVK1eIj4/HYDDw22+/lSgqWh21bNmSQ4cOkZ+fjyRJ/PHHH7Rv377G9cNtpR17aQVlq6vc3FwmTJjAu+++a0osUHph3eps/vz5bN++nbCwMObOnUvbtm1ZsmTJI/eFOHOp5tq3b88rr7zC6NGj0el09OzZk+effx4fHx/eeecdioqKCAgIYNCgQdYO1aJ69erFuXPnCAkJQaVS4evryzvvvEPPnj1rVD/cptFo+Ne//nXfY1+4cGGJgrLjxo2zcrSWs2nTJtLT01m9ejWrV68GoF+/frz77rs1qh/K8ih9IQpXCoIgCGYnhsUEQRAEsxPJRRAEQTA7kVwEQRAEsxPJRRAEQTA7kVwEQRAEsxPJRajRzpw5U6KO0v1888037N6926L7Pn36NLNnzzb7PgTBWkRyEWo0X19fli5d+sB1jhw5YpFy63fv+/Lly9WudpVQs4mHKIUa7ciRI3z66ae0bdsWBwcHLly4QHJyMi1atGDBggWEhoYSHR3N559/jkKhICAggIULFxIZGYnBYKB169bMmjULBwcH+vXrx8iRI4mIiODGjRsEBwczefJk8vLymD59OvHx8cjlctq0acOcOXOIjIzk008/ZcWKFSxdupScnBymT5+OQqHAxcWFKVOmAMVPRO/cuZN///vfpR7HtGnTsLGx4eLFi2RkZNCvXz+cnJzYu3cvaWlpzJ07l+7du6PVakuNf+/evSxfvhytVktmZiYjRoxg8uTJHDlyhMWLF1O/fn0uXbqEXq/nk08+oVOnThX1zyRUQeLMRRD+Jzo6mpUrV7Jt2zYSExMJDw9nzJgxtG3blg8++IABAwbw3XffoVAo2LJlC//9739xd3dn4cKFpjby8/NZv349P//8M6tWrSIhIYFdu3aRl5dHWFgYmzZtAiAhIcG0Td26dZk0aRL+/v7Mnz+fMWPGsHnzZtPZ0saNG3nuuefKjP/cuXP88MMPrF27llWrVmFnZ8fPP//MuHHjWLFiBUCp8UuSxKpVq/jXv/7Fli1b2LBhA9999x2ZmZlA8bDdyy+/TGhoKCEhIdV+YjXh8YkzF0H4n969e6NWqwFo3rw5N2/evGedffv2kZOTw6FDhwDQ6XSmYpgATz75JAAeHh64uLhw8+ZNOnXqxOLFixk7diw9evRg/PjxNGzYkOTk5PvG0apVK7y9vdm3bx+NGzcmNTWVXr16lRl/3759UalUuLm5YWdnR+/evQFo0KAB2dnZD4xfJpPxf//3f+zbt4/ffvuN2NhYJEmioKAAgHr16tGqVSsAWrduza+//lpmPELNJpKLIPyPjY2N6f9lMhn3q4xkNBqZMWMGAQEBAOTl5VFUVGRartFo7mmjfv367Nq1iyNHjnD48GFeeukl5syZg729famx3D57adSoEc8880y5SpzfToy3KZX3fr1Liz8/P5+RI0fSv39//P39eeqpp9i9e7epD8rTN4JwNzEsJghlUCgUpiGqXr16sW7dOrRaLUajkY8++ogvv/zygduvX7+e6dOn06tXL6ZOnWoqolnaPgACAwOJiYlhx44d98yv8ThKiz8+Pp7c3FwmT55Mv379OHLkiGkdQXgUIrkIQhn69evHl19+ya+//sqbb76Jl5cXI0eOZMiQIUiSxLRp0x64/YgRIzAYDAwZMoSQkBBycnIYO3ZsiXX8/PxISEjg7bffBorPQgIDA+nQoYNpLh5zKC3+Fi1a8MQTTzB48GAGDx7M3r17adq0KfHx8Wbbt1CziKrIglAJ5efn88ILLzB79mzT3OWCUJWIay6CUMkcOHCA9957j+eff96UWOLi4ky3Jv9d48aNWbJkScUFKAjlIM5cBEEQBLMT11wEQRAEsxPJRRAEQTA7kVwEQRAEsxPJRRAEQTA7kVwEQRAEsxPJRRAEQTC7/wdcFztzoUqzyAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.kdeplot(data=df, x=\"intensity_mean\", hue=\"file_name\")" ] }, { "cell_type": "markdown", "id": "a4992a72-2d5a-4382-b44c-91050e53408e", "metadata": {}, "source": [ "The figure-level function for distributions is `distplot`. With it, you can have histograms and kde in the same plot, or other kinds of plots, like the empirical cumulative distribution function (ecdf)." ] }, { "cell_type": "code", "execution_count": 6, "id": "0f61843d-2f1a-4602-8a7e-295ff64c650a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAFgCAYAAAArTQp5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABSFElEQVR4nO3deZwdVZ3//1fdrffuJJ3u7PtysickIWyyg4qKihsqisugovJzFhxnXHCccXQc/aozfhH5DojoIAqCgIi4sMkSIIQlC0lO9pA9nU6n0/tdqn5/VDU0TXd6vbf6dr+fj0ce9K1bVed9L7f7fqrq1DmO53mIiIiIRMIOICIiIkODigIREREBVBSIiIhIQEWBiIiIAMOvKIgB04P/ioiISB8Mty/PycCu2tpGXHfo3VUxenQxdXXNYcfok3zMDPmZW5lzI5uZq6rKnKzsWCRHhtuZgiEtFouGHaHP8jEz5GduZc6NfMwskisqCkRERARQUSAiIiIBFQUiIiICqCgQERGRgIoCERERAVQUiIiISEBFgYiIiAAqCkRERCSgokBEREQAFQUiIiISUFEgIiIigIoCERERCagoEBEREWD4TZ0sAoDnZqiqKstpm5lUimPHW3PapojIYFJRIMOSE4my78Ff5LTNyZdcCagoEJH8pcsHIiIiAqgoEBERkYCKAhEREQGy3KfAGFMOrAbeASwAvt3h6UnAs9bad3Ta5mPAd4DDwaIHrLVfzWZOERERyWJRYIw5DbgJmAtgrf0D8IfgufHAU8Dfd7HpSuAfrLW/ylY2EREReaNsXj74FPB54EAXz30PuNFau62L504FPmaM2WCMuc0YMzqLGUVERCSQtTMF1tqrAIwxr1tujJkDnAdc1c2mB4H/g3/Z4dvA9cAVfWm7srK0b2FzKNf3zg+GfMwMUFxSkPM2B/pe5eN7rcwiw0cY4xR8GrjBWtvW1ZPW2svafzbGfBfY0dcGamsbcV2v/wmzpKqqjJqahrBj9Ek+ZgY/d3NTlx+xrBkDA3qv8vG9VuY37lskn4Vx98G7gV939YQxpsIY07GfgQOkcxFKRERkpMtpUWCMGQsUWWt3dbNKI/CloJMiwDXAPTkJJyIiMsLl+kzBTGBf54XGmJuNMe+01maADwA/McZsBlYAX8pxRhERkREp630KrLXTO/y8Bji9i3Wu6vDzE8DybOcSERGR19OIhiIiIgKoKBAREZGAigIREREBVBSIiIhIQEWBiIiIACoKREREJKCiQERERAAVBSIiIhJQUSAiIiKAigIREREJqCgQERERQEWBiIiIBFQUiIiICKCiQERERAIqCkRERARQUSAiIiIBFQUiIiICqCgQERGRgIoCERERAVQUiIiISEBFgYiIiAAqCkRERCSgokBEREQAFQUiIiISUFEgIiIigIoCERERCagoEBEREUBFgYiIiARUFIiIiAigokBEREQCKgpEREQEgFg2d26MKQdWA++w1u42xvwMeBPQFKzyr9baezptMxW4DagGLHCFtbYxmzlFREQki2cKjDGnAU8CczssXgmcY61dFvy7p4tNbwBusNbOA9YC12Uro4iIiLwmm5cPPgV8HjgAYIwpBqYCtxhj1htj/tUY87r2jTFx4BzgrmDRrcD7s5hRREREAlm7fGCtvQrAGNO+aDzwCPA5oB74PfA3wE0dNhsLnLDWpoPHB4HJfW27srK0f6FzoKqqLOwIfZaPmQGKSwpy3uZA36t8fK+VWWT4yGqfgo6stTuBy9ofG2P+L3Alry8KIoDXaVO3r23V1jbiup13E76qqjJqahrCjtEn+ZgZ/NzNTW05bXMMDOi9ysf3WpnfuG+RfJazuw+MMYuNMe/tsMgBUp1WOwJUGGOiweMJBJcfREREJLtyeUuiA/yXMWZ00Hfg08DrOhpaa1PAE8DlwaIrgQdzmFFERGTEyllRYK1dD/wH8BSwCXjJWvsrAGPMzcaYdwarfg74tDFmE3A28LVcZRQRERnJst6nwFo7vcPPN+Dfcth5nas6/LwHOC/buUREROT1NKKhiIiIACoKREREJKCiQERERAAVBSIiIhJQUSAiIiKAigIREREJqCgQERERQEWBiIiIBFQUiIiICKCiQERERAI5mzpZZDjwWk7g1h/Ca2nAc9M4iSIipWNxKsaFHU1EZMBUFIj0gtfWRHrvBrwTh/0FiWKcSBS3oQa3ZhfEEtRXj8ObehZORCfgRCQ/qSgQ6UHm2D4yr7wEOEQnzCMydhpOvBAAz3PxGo6SObSN2j//lOiEJym84GoiJaNDzSwi0h86pBE5iczhHWR2P49TPIr4gguITjCvFgQAjhMhUl5NbM6ZVF16DZma3TTf9++4xw+GmFpEpH9UFIh0I1Ozm8z+jTijJhKbfQZOoqjbdR3HoWzJ+RS/88uQTtJ8/3/gnjiSw7QiIgOnokCkC+6JI2T2rsMpH0dsxgqcSLRX20XHTqfo0i+D69L8wPdwW05kOamIyOBRUSDSidfWTHrXWpzCcmIzVuI4ffs1iY6eSNEl/4DXfJzWh36M56azlFREZHCpKBDpwPM80nteAM8jNvNUnGj/+uJGq2dSePbHyRy0JNfeO7ghRUSyREWBSAduzU68xlqiUxbhFJYOaF/xuWcRN2eTXPcAmSM7BimhiEj2qCgQCXjJFjIHNuOUjyMyZuqg7LPgjA/hFI+m9dGb8NLJQdmniEi2qCgQCWQObPYvG0xZjOM4g7JPJ1FM4bl/g1t/iLbn7h6UfYqIZIuKAhHAbarDPbaXSPVMnIKSQd13bPJC4gsuILXhz2Rqdg/qvkVEBpOKAhnxPM8js28DxAqIjp+blTYKVr0Pp7CUttW/xPO8rLQhIjJQKgpkxHPrDuA11RGdOB8nGs9KG06imMSp7yVzeBvpnc9lpQ0RkYFSUSAjmud5uIcsTmEZkcrB6VzYnbg5h0jlFNqevUOdDkVkSFJRICOad/wgXmsDkfFzB61zYXecSISCMz6M11hLcv0fs9qWiEh/qCiQEcvzPDKHtkJBCZHRk3LSZmzifGLTl5Nc9yBea2NO2hQR6S0VBTJieScO47XUE83BWYKOEisvg1QLyQ1/ylmbIiK9oaJARiTP88gc3AqJYiJjJue07eiYKcRmriK58S+4rQ05bVtE5GRUFMiI5DUdw2uuIzpudp8nPBoMiRXvglQbqXUP5rxtEZHuqCiQESlzZAdE40Qqp4TSfnT0JGKzTyP58kO4zfWhZBAR6ax/U8D1kjGmHFgNvMNau9sY82ngC4AHrAU+Y61NdtrmY8B3gMPBogestV/NZk4ZWbxkM97xg0TGzcaJZPVX4KQKlr+L9PZnSW34EwWnfSC0HCIi7bL2F9EYcxpwEzA3eDwX+EdgBdAA3Ap8Hvhhp01XAv9grf1VtrLJyJap2QU4RKtmhJojMmoCsZkrSW56lMQp7wDKQs0jIpLNywefwv/SPxA8bgM+Z609Ya31gA1AV6PFnAp8zBizwRhzmzFmdBYzygjjuWnco3twRk3ASRSHHYfE0rf7dyJseizsKCIi2SsKrLVXWWuf6PB4j7X2LwDGmCrgGuC+LjY9CHwTWALsBa7PVkYZedxj+yCTIlo9M+woAESrphOdtJDUhj/hapRDEQlZzi+oGmMmAQ8CP7XWPtb5eWvtZR3W/S6wo69tVFaWDiRiVlVV5d8p4nzMDFBcUvC6x57n0VC7h2jJKEqqJ2RlbIL+vFfN576XQ7f/G40b/krVKRcPeqZsy8fPRz5mFsmFnBYFxph5wJ+AH1lrv9/F8xXAJ6217f0MHCDd13Zqaxtx3aE3E11VVRk1Nfl1X3o+ZgY/d3NT2+uWuU11uE3HiU5ZQkvz4B+Vj4F+vVdeyQwiY6dT/8x9tE5aFcotkv2Vj5+PbGZWsSH5Lmd/fYwxZcCfga91VRAEGoEvBZ0Uwb/EcE8u8snw5x7dA5Fozgcr6onjOCSWXkLq2EEyr6wPO46IjGC5PCS5ChgHXGuMeSn4928AxpibjTHvtNZmgA8APzHGbMa/U+FLOcwow5SXSeHW7SMyelLWpkceiNiMFUTLxpDc+Oewo4jICJb1ywfW2unBjz/kjbcftq9zVYefnwCWZzuXjCxu3X5wM0TGTgs7SpecSIzyFZdQ99gvyRzbR3SInc0QkZEhfy5eigyAe3Q3TmE5TvHQvcO1/JSLIRontfEvYUcRkRFKRYEMe27zcbzmeiJjp+V0NsS+ihaXEZ9zBqltqzWtsoiEQkWBDHtu7SvgRIZcB8OuxBddDJkUyS2PhR1FREYgFQUyrHmui3tsP5GK8TixRNhxehQdM4XoxPmkXn4Ez+3z3bgiIgOiokCGNe/EIcgkiVR2NaL20JRY9Ga8pmOkd70QdhQRGWFUFMiwlqndC7ECnPKqsKP0WnTqUpyyKt2eKCI5p6JAhi0v1YZXf5jImMl5NUqgE4mQWHgR7uHtZI7uCTuOiIwg+fOXUqSP3Lp9gJdXlw7axc2bIJogtenRsKOIyAiiokCGLbd2L05RBZGi8rCj9JlTUEJs1mmktj+Nl2wJO46IjBAqCmRYaju8G6+lnkjllLCj9FtiwfmQbiO17amwo4jICKGiQIalxg2PgePkxdgE3YlWzyQydjqpTY/geUNv1k8RGX5UFMiw47lpGjc+gVM+DidWEHacAYkvOB+37gCZQ1vDjiIiI4CKAhl2Mvs2kmk6TjQPOxh2Fp99OiSKSG16JOwoIjICqCiQYSe1dTWRojKc8nFhRxkwJ1ZAfO6bSO9ai9tcH3YcERnmVBTIsOK1NZHe8wKlC87CiQyPj3d8wfngZkjZJ8KOIiLD3PD4qykSSO1aC5k0pYvPCzvKoImOmujPh7D5UTzXDTuOiAxjKgpkWElvW41TMZ6CibPDjjKo4gvOx2usJbNvfdhRRGQYU1Egw4bbUEPmoCU+50wcxwk7zqCKTV+OU1RB8mV1OBSR7FFRIMNGatvTAMTnnBFyksHnRGLE559LZu8G3BM1YccRkWFKRYEMC57nkdr2FNEJhkhZ/syI2BfxeeeCA6ktj4UdRUSGKRUFMiy4NTvx6g8Tm3Nm2FGyJlJaSWzqMlJbHsfLpMKOIyLDkIoCGRZSW5+CaJz4zFPDjpJV8QUX4LU2kN71fNhRRGQYUlEgec/LpEnteNbvjJcoDjtOVkUnL8Qpr9YIhyKSFSoKJO+l966Dtibiw/jSQTvHiZCYfz6ZQ1vJHNsbdhwRGWZUFEjeS29djVNUTnTyorCj5ETcnA3RGKlNj4YdRUSGGRUFkte81kbSr7xEbNbpOJFo2HFywiksJTbzNFLbVuMlW8KOIyLDiIoCyWupnWvAzRCfe1bYUXIqseB8SLWS2v502FFEZBhRUSB5LbVtNZHRk4gMg2mS+yJSPYtI5TRSmx7B87yw44jIMKGiQPKWW38I9/B2YnPOGnbDGvfEcRziC87HPbaPzOHtYccRkWFCRYHkLX9YY4f47NPDjhKK+OwzIF6k2xNFZNCoKJC85HmuP6zxpPlESseEHScUTryA+NyzSO98DrflRNhxRGQY6FVRYIz5aRfL7hr8OCK9kzmwBa/hqH973ggWX3A+uGlS9omwo4jIMBA72ZPGmJ8Ak4CzjTEdZ5mJAzN72rkxphxYDbzDWrvbGHMR8AOgCLjDWvu1LraZCtwGVAMWuMJa29jL1yMjRMo+DoliYtNXhB0lVNHRk4hOmEdq86MkllyCE9HJPxHpv57+gvwU+C1wAri7w7/bgLedbENjzGnAk8Dc4HERcAvwLmA+cKox5pIuNr0BuMFaOw9YC1zX2xcjI4PX1kR611ris8/AiSXCjhO6+IIL8BqOktm3IewoIpLnTnqmwFq7FlhrjHnIWruvj/v+FPB54H+Dx6uAbdbaXQDGmNuA9wMPtm9gjIkD5wDvDhbdCvwV+Kc+ti3DWGr705BJE583si8dtItNX45TVEFy0yPEpi4NO46I5LGTFgUdTDHG/C8wBnj13i9r7ZLuNrDWXgVgjGlfNBE42GGVg8DkTpuNBU5Ya9MnWadHlZWlfd0kZ6qqysKO0GdDLfO+7U+RGDeD8fMXd7tOJuMy+ZIrc5jKb3Og71Vft/fcDE4kyrHlF3P8qbsZFW8hPqp6QBn6aqh9PnojHzOL5EJvi4L/h3/U/gLQ35FSIp22dQC3h3XoYp0e1dY24rpDb0CXqqoyamoawo7RJ0Mtc+boHpKHd1Fw5kdOmquqqowbr78jh8ng6msuZ9+Dv+j39sUlBTQ3tfVpm8mXXElNTQPutDNg9d0cfur3FKx6f78z9NVQ+3z0RjYzq9iQfNfboiBtrf3BANvaB0zo8Hg8cKDTOkeACmNM1FqbCdbvvI6MYKktj0M0RnzOGWFHGVIipZXEpi4jteVxEivejRONhx1JRPJQb7sqbzTGdH+utneeBYwxZrYxJgp8mA79CQCstSngCeDyYNGVndeRkctLJ0ltf5rY9JU4BSVhxxly4gsuwGttIL3r+bCjiEie6u2ZgpnA88aYPcCr07KdrE9BZ9baVmPMx/HvXigE/gDcBWCMuRn4nbX2d8DngJ8bY74GvAJ8qLdtyPCW3v0CJJuJzzsn7ChDUnTyQpzyalKbHhmxozyKyMD0tij4an8bsNZO7/Dzw8Abuke3d0oMft4DnNff9mT4Sm35K05ZFdGJ88KOMiQ5ToTE/PNpe/YOMsf2Eh0zJexIIpJnenv5YEM3/0RyInP8AJkDm4nPOwfH0QA93YmbsyEaJ7Xx4bCjiEge6u2ZgqP4dwU4vHZ3QL9uFxTpj9SmRyESJT7v3LCjDGlOYSnx2WeQ2raaglXvwykcurfnyvAWjIj7VmALcC3+KLXXW2sXhRpMTqpXRYG19tVDM2NMAr+ToOl+C5HB46XaSG19ktjMU4kUlYcdZ8iLL76YlH2c5Ja/UrDs7WHHkZHrM8DU9oHvjDG5HUBD+qW3ZwpeZa1NArcaY9YCXx78SCKvl9r+NCRbiC+4MOwoeSE6ZgrRifNJvfwwiSVvwYn0+ddcZECMMU/gn1l+0BizADit0/MJ4D+Bc4Eo8CLwBWttt9N9GmPOA74F7AQW4c/B8xlr7VPGmLnAj4Ey/FvZXwIuDzq4t+LPuXMRUAp8A3803cX4t7xfaq1tMsbMB/4bqAwy/chae8uA34w809tZEsd0+FdpjHkLMDrL2UTwPI/UpoeJVE4hOm522HHyRmLRm/GajpHe9ULYUWQEsta2j0F+PrC3i1X+GUgDK6y1S/G/nL/Ti12fBnzfWnsK8DPg28HyTwE/t9aeDswGZgDtp8kKgEPW2lXAz4Gbgb8DFgAVwLuMMTH8u+H+2Vq7Ar9Y+aIxZsTdxtOfPgXgDzL0hawkEunAPbwdt3YvBWd/HMdxet5AAIhOXYpTXk1y45+Jz1oVdhyRzt4BjAIuDobCT+B/r/Rkj7X2peDnF4CPBz//U7CvL+FPwjcR/6xAu7uD/+4ANlhr9wMYY3bhD98/F5gF3NJhaP4i4BTgmT69sjzX5z4FIrmU3PhnSBTpvvs+ciIREgsvou3p28kc2Um0useZzkVyKQr8rbX2QQBjTCn++DU9aenwc8cD1V/hf5/dCTwATO3wHEDH8cNT3eSpt9Yua19gjBkH1Pci07DS28sHEWPMl4wxjxpjnjTGfD043SKSNe6JGtK71pKYfz5OvDd/L6SjuDkb4oUkN/4l7Cginf0JuMYYkzDGRICbgP8YwP7eAvybtbZ9wpPT8L/oe8sCLcaYjwAYY6YAG4EVA8iUl3p7BuA/gAvwO2H8ADgT+F62QolAcJaACPGFF4UdJS85iSLi5mzSO9fgNh8PO45IR98EduN3MNyEf1R/7QD29xXgHmPMBvwJ/P6K37egV4IO9O8CrjLGrAf+DFxnrX1qAJnyUm+P9t8KrAzmJsAY8wCwDvj7bAWTkc1rayJlnyA2axWR0jFhx8lbiUUXk9r4EKlNj1Cw8j1hx5ERxFrbfvp+eofFi4LnWoDP93F/j7Vv3/mxtfYG4IYecmCtvYtgeP3g8fs6/LwOjabb66Ig0l4QAFhr24wxXV2XERkUyc1/hVQriSVvDTvKkOa5mZNP11tVxqE5K2jd8hgTL/4QkVhiwG1mUimOHW8d8H5EOjPG3EH3Y+Bcbq21ucwzEvW2KHjJGPND4Hr8zh3/H7A+a6lkRPMyaVIv/4XoxPlEx04LO86Q5kSi7HvwFyddxyWB23yCvb/+T6KVA38/J19yJaCiQAaftfbynteSbOptn4LP449LsBp/CuSx+IWByKBLbXsKr6mOxJJLwo4yLDilY3EKy3EP78DzvJ43EJER66RFQdAz9OfAhdbaj1trxwFrgAzQ7chTIv3luWmSL/6eSNUMolMWhx1nWHAch8i4WXitDXgnenMruIiMVD2dKfg3oBzo2APzU/iDTnwjO5FkJEtvfwavoYaC5e/Mu8GKGpuT7D0RYWtdlE21MTYcjbGtLsq+hggn2hzCPEiPjJkM8SIyh7eFF0JEhrye+hS8Azg16CkKgLX2gDHmSuBp4GvZDCcji+e6tL14P5HKqUSnLgs7zkllXDjaGqGuNcKx1ggNKYcHrnsQf+j1rhVGPaqKXaaVZ5hZkWbWqAzVxW5O8jpOhGj1LDL7N+I2HSNSojs6hqp0xt0Xi0YmZWG/+2PRiGa2lZPqqShIdiwI2llrTxhj2rraQKS/0jufxas/TMHF1wzJswSeB4ebIxxoinKkOULGc3DwqCjwmFSS4cLzlhLdvYbiuEc8AhEH2jLQknY43hrhSEuEw00Rnj8c58n9/l0A1cUZllSlWV6dYkFxdvNHxk4lc8iSObydyEwNfTxUxaKRSZdee9+/DvZ+7//+u/6lN+sZY/4F+EDw8AFr7ZeMMRfhj1FTBNxhrf1asO5uoBlI4o81kAa+aK19tMP+LsafU+CkM5oFEx79HtiO36G9CH8AoU9YaxuCdf4Of/bFTNDW/wS3I2KMcfDPYF8WbN8GfN1a+8fg+e5ewzL8+RDKgceBq6216Q65vglkrLXfCB6PAn4JzARqgA9Yaw+d5HV9PGj3leA9KsAfgfHfrbWZk70nwfaTgLXW2gnB4+nAY9ba6Z3W86y1TtDeedbaj/e07670VBRkjDFl7f9DOjRehj9Dlcig8Nw0bc/fR2T0ZGLTl4cd53XSLuxtiLL7RJTmdIRExGNSaYYJJS6jC1yiwUW4y86bzb4HV/e4P9eDw00RbF2M9TUxHn0lwUN7CphQ6nLaeI8zJ6YoSwz+tQYnGidSNQP30Fa81kacwtKeN5IRJfjifDP+mP8e8EdjzId4bUbDvcADxphL2ocoBt5mrd0dbH8pcDswIRip8O/xBxba0MsIa62153XIc1ew/ZeNMd8AzsH/wjtsjKkC7jXGVFprv4lfyKwAlltr08HMiU8ZYxYCDcAt3byG24CrrLXPGGN+in+J/CfGmAr8L/MPAd/tkPHfgSestW83xnwUf1C/nu6a+F37l7QxpgS4D7+Aue5kGxlj3gb8FzC+h/0Pmp76FPwKuDl4EcCrL+hmXptgQmTAUlsex6s/RMGq9+I4Q2OqDc+DVxqiPLavgE3H4hREYXl1kguntrF4bJqxRa8VBH0RcWBCqct5U5J8YXkz3zv3BB+Z30xZAu7dXsRXnyzjl5sLOdQ0+O9DtGoGOBEyR7YP+r5lWDgIXGutTQZj02zGnyxom7V2V3AEfRv+1MNdeRQYb4ypBOYH/z41gDyPAYuMMcXAPwKftNYeBrDW1gT7/lLw/Hj8oY0Lgue3Au/Dn+tgVVevwRgzDSiy1rZPenRrh9f2LmAb8P1Omd6Of6YA/O/IS4wxvT5IttY24Rc6nw3ObpzM3wA5HXWspzMF/wXcCBwyxryMX0TMx39D/i270WSk8FKtJJ+/l+j4uUOmL0Fdq8OGo3EaUhFGF7gsr04ypjA7PQWLYnDWpBQXz42w43CKR/YW8MzBBE/tT7BqfIq3z2yjapD6HjjxQiKVU3FrX8GbME9zSsjrWGtfbv/ZGDMH/+j7/+IXC+0OAt31Tfgw/pdvLVCLP2zwef3JEhyAvhO/MFgINLWfkeiQd1NwKXse8Isgb40x5gngEfzplOuMMRO7eQ3dLcda+4sgxzc6RXt1m+CMxAmgCn/6597aCFQG23V7S5C19r1Bhj7semBOWhRYa13g08aYb+GflnGBZ621B0+2nUhfJNf/Ea/lBAVv/kLofQkyLmw9HmNnfZTC4MzA+GKXXMWaUOpyxfwWLp3VykN7Cnhsb4LnDsd506Qkl85so3QQLitEq2fhHt1N5shOYpMWDEJqGW6CU+4P4B+dp/HPFrRz8L8L2v3BGJPEn/74FV7rj9AfK40xLwU/x/G/2H+AP5xxd99XccCz1tYBZxljFgMXA5fin0U4Ff+AtuMvT/tr6G75yXT+a9CbbTprb/MNffZ64Q1tBWccBuWopbdTJ+8B9gxGgyIduc31JNf/kdiMlUTH9Xr+kqxoSjk8f9g/OzClLM38MWniIV3JKE94vGdOKxdObeMPuwp4Yl+C5w/HuXRmG2dPThIZQJHiFJYSGTURt2YX3rjZOIMw9LEMH8aYs/AvD/+dtfbXxphzgQkdVhnP64+K39b5CH4AXtenoEOmTUDcGGM6DnUcFC8RwBpj/gF4OJjDYAPwA2PML4H34o+v09Vr2NfN8pPZH6y3L5gtuAz/rEhfLAH2de6v10t1QEWnZdXB8gEbGhdvZcRqW/MbSKcoOPV9Pa+cRYeaIjy5P0FrxuHUcUmWjA2vIOioosDjQ/Na+erpjUwqdfm1LeL7a0s4PMD+BpEJBtw0mSM7BympDAfBlMH3Ah+21v46WPys/5SZbYyJ4l8ieLCbXWSFtbYZ+BbwU2NMdZC1Gn/K5e8Gz1cA3zTGlAbPlwOzgJe6ew3BAW9rUAgBfJSeX9sfgCuDny/H73TY67mAgg6M3wR+3NttOgoKiW3GmPd2WPxp4KH+7K+z3s59IDLo0oe2kd76JImlbyMyKmeda1/H82D78Shbj8epSLisGJekaAj+Vkwqdfm75U2sORTnDlvEt54t5Z2zWvmo278zhpGicpxRE3BrduBVz8KJ6WaioSKdcff39vbBvu431nPP2C8ChfhH2e3LbgQ+jn/2oBD/S/GurjbOJmvtd4wxx4GHgjsbPOBGa237l+s38QuH9caYVvzT7Ndba/8Cr94a2NVruAK4KSgiXgB+1EOU64Bbg352x4Pte/LO4LKIh/+9ezf+HR399RH8OyS+jn/ZZj2vn3XyCmNMxyOtb1trv92bHTvDbCz06cCu2tpG3H7+scymqqoyamr6c7YoPNnK7LkZmn/7Dby2Jko+8B848YJB3X9VVRk3Xn/HSddxPXi5NsYrDTEmlWZYXJnq190E7a6+5vIeJyc6meKSApqbeh7+o77N4Zebi9hwNM786WO4YtJuKov6/nl3m+tJb3mM6IR5RCf0viPT5EuufPUzoc/0G/Y99AbYEOmDIXhMJCNB6uWHcY/tpfDiawa9IOiNjAsv1sQ53BxlVkUaMzqds86EA1VR4PHZpc2sORTnzh0xvr2vlI8vbGFxVbrnjTuIFFfgVIwnc2QHkeqZOFGdLZDsMsZcDny5q+estctym2bwGGP+HvhYF08dsNa+7STbDbn3Q0XBCDNmVCHReN/++FdVdT90b29kUimOHX9tql23sZa2tb8lOmUxsekrBrTvfuVx4fkjcWpaoiysTDG9vMdBxXq334wbTCvcf30ZfHgKsOpIA//ntue5YV2E954/m49eMp9oH053tB44kwM/+ydKR49m9Fm9ux06k8nN0Mwy/Fhr7wBOfgovD1lrfwj8sB/bDbn3Q0XBCBONx/t0iru3p7RPxv+i9IsCz/No/est4HkUnnVlzm9B7FgQLB6bYmrZ4BQEANFopMdLFicTT8RIJft2tH/1NZczN3aYdFmMux/dzqNPb2V5dZKCaO/3cUpsPMm//oa7Xmgm4/RcMF59jaa8FxmuhkD/ahlJUpsfJbP/ZQpO/yCR8qqctu168EKWCoIwRSOweGyapWOTHG9zWH0gQWOy98XWzoIFJLwkU5I7sphSRPKBigLJGffEEdqeuYPo5EXE55+X07Y9D9YfjXOkJcqiyuFTEHQ0uczl9PFJ0q7DUwcTHG3p3a93fWwsR2Pjmd62hZiXzHJKERnKVBRITnhumpZH/h84EQrP+UTOLxtsqYuxvzHK3FEppg1SH4KhaHShx1kTkxRGPdYcivNKQ++uI2wrXETCSzKtbWuWE0pPvEx6H/6ta4P6L9ivyEnlvE+BMeYq4JoOi2YA/2utvabDOv8CfJLXRmi6qcO9qJKH2tbchXtkB4UXfo5IaWVO2959IsrO+hjTytLMHjV8C4J2xXGPMycmeeFInA1H4yQz9Pi6G6JjOBSbzLS2rexNzCYZ0ZwIYXGisUk7v/XeQZ86eeZX7x70sQ9k+Ml5UWCtvRl/lsX2ISrvxZ9CsqOVwAettU/nNJxkRdPW50it/yPxBRcQn7Uqp20fbYmwqTbGuOIMCyvz57bDgYpH4NRxKdbVgK2Lk3adHm+73F64iHGN+5nRthlbdEruwsqQEhyUtc9f8IC19kvBlMo/AIqAO6y1XwvW3Q00A0n8OQDSwBettY922N/FwD9bay/sod3zgN8D2/HPbhThTxz0ifbhgI0xfwd8BsgEbf2PtfaG4DkH/7vksmD7NuDr1to/Bs939xqW4X8nlQOPA1cHEx1NxZ9NsRqwwBXW2kZjzFpe++4swh81cVL77I1dvK6PB+2+ErxHBfizK/67tbbHoxRjzCT84Z8nBI+nA49Za6d3Ws+z1jpBe+e1T9XcV2FfPvgJ8BVr7dFOy1cCXzHGrDfGXG+M0WFLnvLamqi5/3oiY6dRcPoHc9p2U8rhhSNxSuIey6pSI6YgaBdxYFlViqllaXbUx9hYG+NkY5U1R8vZH5/OlOQOCt2m3AWVISP44nwzcAqwDFhhjPkQcAv+VMLzgVONMZd02Oxt1tpl1tql+F/Ktwf7ihhjrgV+jT+lcW+sDfZ1irV2XrDsK8H+voE/a+J51tpF+JMeXWGMuS5Y7wP4E/ctD7J8BPhfY0y1MaboJK/hNuAaa+1c/C/t9qmebwBuCHKsxR/JEGvtyiDjMvzhk7/eXUHQwe86vEcrgLN548HwGxhj3kYwHXVP6w6W0G5JDD58Rdba33RaXgq8iD8713b8+a2vA77a231XVpYOXtBBNtB7/gdDcUnfBgvq6/rtvHSKhi3PAR6TPvAl4qNzd9mgqSXF80cSOA6cMdmlKJGbj3p8gO30Z/uetjllAhTEXbYdi+ESYfkEt9sJlV6JLmHisT3MSW1mS9np3e6z4+d4KHym+yofM+fIQeBaa20SwBizGX+GxG3W2l3BstuA99P1HAGPAuONMZX4X2Tz8b9kv9DPPI8BbzHGFON/Jyxs/wK21tYYYz4FPGuM+X7QXhT/SDxtrd0aDPWbAlZ19RqCiZaKrLXPBO3dCvyrMeZm4Bzg3R2W/xX4p/ZgxpgLgaXAJ/rygqy1TcaYr+DPLvl1a+3JhiP9G+A9+BM85USY4xR8Bv+UyutYaxuBV0eACv5n30IfigINc3zyDH0Zd6C/4xR4nkd65xq85hOM//B1HE+XQI5eu+t63Hj/JhqTcNr4FAlcUjnqVN/XcQY66s84Bb1tc24FRLwoti6O63Z/5iRFAXsTs5jaup2dsbk0Rcu73J+GOe5+3/nMWvty+8/GmDn4R9//F79YaHcQmNzNLj6M/+Vbiz9z4FXBZYE+M8aU4J8ZeAxYCDR1no3RWrvJGNMGzAN+EeStMcY8gT/t8s+ttXXGmIndvIbulo8FTlhr052Wd/SvwFd7cwmgCxuBSqAKONLdStba9wJ0mIci60IpCowxCeBc/Ek2Oj83FbjIWntLsMjBr/Qkj2QObMKrP0R0ymKKZyylKYdfHL97ahdrNx9mUWWayiKNvtdu9qgMDrClLo7jwNKxXRcGOwvmMym5izmt63mp5E05zynhC/p7PYB/dJ7GP1vQzsGfbKjdH4wxSfyJeV7htf4I/bEymDgIII7/xf4DYBHdf1/FAc9aWwecZYxZjH9p4VLgS8aYU/EvlXc8Umx/Db1dDh1ec/D+jLXW/r6vLzDQvu+Wfmz7hj9qQX+KQTkSDutMwRJgq7W2qwuXLcB3jTGPArvxZ366J4fZZIAyh7fjHt5OZOx0ImNn5LTtTbuPcf9Tu7lg5RSKarfltO18MGtUBteDrcfjOHgsGfvGzoepSCG7CuYzp20Do9NHqItVhxNWQhFMI3w38HfW2l8bY84FJnRYZTxwoMPjt3U+gh+Atdba87rItAmIG2OMtdZ2WL4Q/wvcGmP+AXjYWrsO/3T7D4wxvwTeC6zp5jXs62b5EaDCGBMNzgRM4PWv+d0MbHjiJcC+9g6UfVSHP010R9W8drfegIRVFMzE/5/xKmPMH/A7bKw1xnwGuB+/8nwS+H7uI0p/ZI7uIbP/ZSKjJhKdsiSn4xHUN7bxP/dvYnxlMZ99zxJuvUlFQVfmjM7g4bDteIyIA4u6uCtjT8FcJid3YFpe4pnSi8AJu0/yyOFl0vuzcfugl0nvd6In/5NvjJmCf0fY5dbaR4LFz/pPmdnALvxLBLd0vYfssNY2G2O+BfzUGPMea+0RY0w1cBPw3eD5CuCbxpgPB3cJlOPfGXBrd6/BWrvHGNNqjDnLWvsU8FHgQWttKrgEcTl+x8kreX0fijOA/+rPa2nPCfTrNntrbYMxZpsx5r3W2ruDxZ8GHurP/joLpSiw1t4J3Nlp2ds6/Hw3fqUqecStO0DmlZdwyquJTl+R04LAdT3+5/5NtLal+ccPLqOwQNN6nMycUWlcD3bUx4hHYN6Y1/dLcJ0oWwuXsLTlGSaldrM/MTOkpCOPE411d71+oPvtzWpfBArxj7Lbl92If6n37uC5PwB3DX7Ck7PWfscYcxx4yBjTfnr/xg5j2HwT+Baw3hjTin+a/Xpr7V/g1VsDu3oNVwA3BUXEC8CPguWfA35ujPka/mWRD3WI84YD2x68M7gs4uF/794N/Gcftu/sI8BPjDFfxz94Xo9/Vr3dFUEny3bfttZ+uzc7dryT3aOUf6YDu9TR8OQZsjEhknviCOkdz+AUjyY25wycyGt/gCZfcmXWX/d9T+7ivid38Ym3zePsJROpqiob0ORE/XH1NZeHMiFSf9v0PNhYG+OVhhjzRqeY1XmAI8/j1KZHKHabeLLsklcnS7r6msvV0bD7fY+wG19luNHhlAyY21hLescanMJyYrNOf11BkAv2lTp+9+Quzlw0njctntDzBgKAE1w6SLkOW+riJKIwpeOcEI6DLVzG6U0PM6NtC9sLF4cXVoYFY8zlwJe7ei647z8vGWP+HvhYF08d6HgWvIvthtz7oaJABsRtrie94xlIFBKbfQZO7I1T73puJmu3ajW1pLjlwS2MH1vC3314BUW6bNAnTjDAUcqF9UdjxCMe40te69x8IlbJgfhUprVZ9iVm0hopCTGt5Dtr7R0MrIPekGSt/SHww35sN+TeD/0FlX7zWhtJb18NkTjxOWfixLse5MiJRPt0yaIvfraxiNrjcb64sonaR25/dfnkS67MSnvDUcSBFdUpnj2U4MWaOKdFk4wpfO3y27bCJYxL7ce0vMS6krNCTCoi2aYuxdIvXrKF1LbVAH5BkCjOeYa1h+KsOZTgkhltzKgY/hMdZVMsAqeO82dXfP5wgqbUa5fG2yLF7CyYz7j0fsamDp5kLyKS71QUSJ95qTa/IMik/EsGhbkfVrqu1eH2LUVML09zyfS+j7gob5SIwqrxKTzguUP+7IrtdhcYmiJlzGt9ETedo+EhRSTnVBRIn3iZFOntT0Oyhdjs04kUj8p5BteDn28qJuPCJxa1ENWneNCUxD1WjkvSknFYezhBJuhe4DlRNhctp9htpH71vaFmFJHs0Z9T6TXPTZPe/gxe6wliM08lUpq7CY46enxfAnssxvvmtlBdrGGMB9uYQo+lY1PUtUVYfzT+6syKx2LjOBifwvHVv8Wt72lSOBHJRyoKpFc8zyW9cy1e0zGi01cQqRgXSo6jLQ73bi9k/pgUb5qkKTGyZWKpy7zRKQ40RbF1r/VH3lq4DKIxWlffxjAb40REUFEgveB5HplX1uGdOEx0yhKioyeFlANu21yMA3xkQUuXk/nI4JlZkWFqWZod9TH2NkQBaIsUMebcD5LZu4H0rrUhJxSRwaaiQHqUObAZt/YVIuMN0arcTnDU0ZP749hjMd4zp/V1t8xJdjgOLKxMU1mYYePRGMda/SqsfOUlRCqn0fbU/5JpaQw5pYgMJhUFclJt+7fhHt5GZOw0ohNyN6d3Z8daHX67rQgzOs2bJqn3e65EHFhenaIw5vHCkQQtaX/cicJzP4nX2kjtQz8PO6KIDCIVBdIt9/hBWna+iFMxPuczHnbkefDLzUV4wEcWNOuyQY4lorByXIqMC2sPJ2hNpomOnUZi6SU0rn+E9L6NYUcUkUGiokC65DbXk979PNGyMcRmrMQJcercpw/G2VQb592zWxlbpMsGYShLeJxSneJE0uG/f/0inueRWP4u4mMm0vrErXgpjRUhMhyoKJA38FJtpHc+C9E4JfPPwolEQ8tyvNXhrq1FzBmV5pzJumwQpupil3mj0zy57gD3r96NE0sw9u2fxWs4SttzmulcZDhQUSCv47ku6V3PQaqN2MxVRAqKwsviwe1biki7/t0GEV02CN3Migznr5jMvU/s4nlbQ9HUBcQXXEBq41/IHN4edjwRGSAVBfI6mX0b8BpriU5bRqRkdKhZ1hyKs+FonHfNatUgRUOE48A171/GrInl3Pz7Tew6UE/BqvfjlI6h5bGbdBlBJM+pKJBXZY7uwT26m8i42UTHTAk1S32bw522kJkVac6fqssGQ0kiHuXz71lMcWGMf//ZGpoyMQrPuwqv/jBta+4MO56IDICmThYA3JYTZPauxykbS3TigkHddybj9mkqY8/z+MXPnyPFYb74mfOYMq5sUPPIwGQyLnNmjOVrnzyNf7r+SX724Bb+5VNnUHfkHZxY83sql5xF8cylg9pmOuNSd6xpUPcpIm+kokDwMmnSO5+DaJzY9BWDfuthNBrhxuvv6PX6BxojvFiTYN7oFA/85g/9avPqay7v13bSs47/PxeNjfPi1hqu/fffsmB0gtMjZez+9fdYXfYW0k5i0NrU/0+R3NDlAyGzdz20NRKbsQInXhhqlrYMvFwbpyLhMqMi0/MGEqrpo7xXh0Le35xgY9FpJLxW5rW8GHY0EekHFQUjXObYPtxje4mMN0TKqsKOw8u1cdIuLK1K6W6DPLGgMs2oApd1NXH2u5XsKpjPxNQeqlP7wo4mIn2komAE85Itfj+C4tFEJ8wNOw4HmyIcbIoye3SasoQGKcoXUQdWVCeJReD5I3FsfAH10dEsaFlLwm0NO56I9IGKghHK8zzSe14EzyU2fXmoIxYCJDOw8Wic8oTLLF02yDuFMVhenaQ55fDS0QI2FJ5G1EuzsOU5f8AJEckLKgpGKPfoLryGGqKTFuEUloYdh5dr46R02SCvjSn0mD8mzeHmKOsaRrO1cClV6YNMSWpQI5F8obsPRiAv2Uxm/yac8moiY6eFHYdDTREONEWZOypFuS4b5LXp5Rnq2yJsPR6jIjGXsbFDzG1dR12sisboqLDjiUgPdKZghPE8j/Qr6wGITVka2syH7ZIZ2NB+2WCULhvkO8eBxWP94u7FowmeiZ1G2kmwpPkZIl467Hgi0gMVBSNM06Yn8U4cJjpxPk5BcdhxdNlgGIpGYEV1Cgd4tqaUFwtOo9Q9wdzWdWFHE5EeqCgYQdzWBo7++Rac4lFEqmaGHefVywZzRqV12WCYKY57nFKVoiHl8Fj9ZHbF5zI1uYOq1P6wo4nISagoGEHanv41bmsT0WmnDInLBhtrddlgOKsqdjGj0xxsivKX1CmciIxmYctzFLjNYUcTkW6oKBgh0vs2kt72FKPOeDeRovKw4/BybZxkBpaO1WWD4WxWRYZxxRk2HUvwSPQsol6GRc1rwNOslyJDUSh3HxhjHgWqgVSw6DPW2mc7PL8MuBkoBx4HrrbWqpdSP3mZNK1P3YZTMY5Rb3ofzX/5dah5Xne3QYEuGwxnjuMXfk8eSLD66GgmV61kZfJZpictuwvmhx1PRDrJ+ZkCY4wDzAWWWmuXBf+e7bTabcA11tq5gAN8Ktc5h5Pkhj/j1R+i8IwriMQGb5KafmXRZYMRJx6F5dUpUi784fhsDsQmM7t1I+Xp2rCjiUgnYVw+MMF//2yMWWeMueZ1TxozDSiy1j4TLLoVeH8O8w0rblMdyRd/R3TqMmJTl4SaxfP82w912WDkqSjwWFSZprY1ym/bzqLNKWJJy7NEvVTPG4tIzoRRFIwGHgYuAy4ErjbGXNzh+YnAwQ6PDwKTcxdveGl79k5w0xSe+eGwo7C/McKh5ihmdFqXDUagKWUZppSm2VZfwIPOuRS5TcxveSHsWCLSQc77FFhrnwaebn9sjPkp8DbgL8GiCNDxG8MB+tQrqbIy/GF7u1NVVZaztlr3bqZh+9OMOuu9jJk169XlxSUFfdpPX9fvSpIYL9dGqSzyMFUOjpP9j148kfsuMwNtsz/bh/06+9L+sglw4hWP1cfGMrP6FJYlX+C4O4HDhT3fIjuYvzu5/D0UySc5/2tijHkTUGCtfThY5PBah0OAfcCEDo/HAwf60kZtbSOuO/SORKuqyqipachJW57r0vzA/+CUjCE9982vtltVVUZzU1uv91NcUtCn9btSkXFZeyACDiwd20Y6R2eMU8nc900dSJvxRKxf24f5OvuTeXlVhicOJLj72AImlO9nbsNajnmjaI6e/K6YwfrdyebvoYoNyXdhXD4YBXzPGFNojCkDPgbc0/6ktXYP0GqMOStY9FHgwZynzHOpLX/FrX2FgtM/iBMf+JH+QNz1yDbq2iIsqkxRpNk2RrziuMeyqhQnkhF+2XourhMJhkFWx1ORsOW8KLDW/h54AHgReB64xVr7tDHmD8aYlcFqVwA/NMZsAUqBH+U6Zz7zUq0kn7+H6Pi5xGaeGmqW3fVRbv+zZWJJhkmlujddfOOKXWZXpNnTWMg97oWUu8c1DLLIEBDKcZu19jrguk7L3tbh53XAqlznGi6S6/+I13KCgjd/IdSRC9sy8LOXixhTXsii8rrQcsjQNHd0mro2h2eOj2XGmGWsSr5EbWwcNfFJYUcTGbE0ouEw4zYfJ7nuQWIzVhIdNzvULHfaImqaI/z9h04hHg01igxBjgOnVKdIROCe+kUccqpZ1PIchW5T2NFERiwVBcNM8oXfQSZNwar3hZrj2YNxVh9I8ObpbSyZXRVqFhm6CqKwvDpJS9rh1ubz8VyXxc3P4GgYZJFQqCgYRtzjB0ltfoz4/POIVIwPLcfBpgi3by5izqg0l84c2J0LMvyNLvSYPybNwZYC7shczOhMLbPaXg47lsiIpKJgGGlbcxfEEiRWvCu0DMkM3Ly+mETU45OLm4nqEya9ML08w8SSDGtPjOUpbxkz2jYzJn047FgiI47+ZA8TmUPbSO9+nsTSS0KdBfHXW4o42BThE4taGKVRC6WXHAcWj01RGve4t34RB7xqFjc/S8JtDTuayIiiomAY8DyPtmfvxCmqILH4raHlePpAnKcPJnjrjDYWVGpSS+mbWMSfOCnjOfy06QIcN8WiljX+pBkikhMqCoaB9J4XyBzeRmLlZaENVLS7PsrtW4owo9O8Q/0IpJ/KEh5LxqaoTSb4RfItjE0fYnrShh1LZMRQUZDnPDdD8tnfEBk1gbg5O5QM9W0ON64vpiLhcdXiZs1+KAMysdRlenmaDU1jeSx9CrNbN9C6f2vYsURGBBUFeS615XHc+kMkVr0fJ5L7wQBSLvzP+mJaUg5XL22iNKFTvTJw88ekGVXgcn/DIva5VRy554d4bRq/QCTbVBTkMX8443uJjptDbNopuW/f8wco2lkf48qFzUwu073lMjgijj9+QcSBm5supOnEcVof/xme+heIZJWKgjyWXP8nvJZ6Ck6/PJThjB/bm+DJ/QneOr2VFePUsVAGV1EMllWnqE/FuK/kclI715La/FjYsUSGNRUFecptrie5/kFi01eEMpzxuiMxfrO1kKVVKS6dpY6Fkh1VRS5zR6V56hWHZ4rPo+3p28kc2xt2LJFhS0VBnkq+cB+kkxSsen/O295VH+WnG4uZVp7hk4vUsVCya/aoDMtNNXcdnMZeJtD60E/wUipERbJBRUEeco8fIrX5r/5wxqNyO5xxTXOEG14qpqLA5bPLmklooiPJMseBf/jwcspLE/ys+QIajtXStvqXYccSGZZUFOShtufugmiMxPLcDmfcmHS4/qViPOD/O6WZct1pIDlSUVrA5969mOMtHrdHL6Nty+Oktj8TdiyRYUdFQZ7JHN5Oetdafzjj4oqctducgh+9WEJda4TPLm2mulh3GkhuzZxYzgcvnMPG2gQPx86l9Ylbces1P4LIYFJRkEdeG864nMSS3A1n3JqG618q4UBjhM8saWbWqEzO2hbp6ILlkzhtwTgeODqNranxtDz0Y7x0MuxYIsOGioI8ktnzEplDW0mseDdOvDAnbSYz8JN1Jew5EeWqxc0sHKtbDyU8juPwsbcaxo8p5hfN53Kspkb9C0QGkYqCPOG5GdrW3IlTMZ74vHNy0mbKhR+tibOtLsrHFrawrFoFgYSvMBHj85ctJpmJ8Avv3bRufpzU1qfCjiUyLKgoyBMp+wTu8YMUrHofTiSW9faSGbhxXTEbjkS5Yn4Lq8anst6mSG9NHFvCxy+Zx476OL+PXETrkz8nc2x/2LFE8p6KgjzgpVpJrv2tP5zx9BVZb68lDde/WMLm2hh/syzFWZNUEMjQc9qCcVy4fDKP1E5gfXoGrQ9dj5dqDTuWSF5TUZAHkusexGs5QcEZH8z6cMZNKYf/fqGEHfVRPrmohXOmqVOhDF0fuGA2MyaU88uG0zl0rInWx2/V/AgiA6CiYIhzm+r84YxnriJaPSurbdW3Ofzw+RL2N0b5zJJmVuqSgQxx8ViEz717EbFYjFvTl9K8/TlSmx8NO5ZI3lJRMMQl194DboaCVe/Lajv7GyP855pSjrZE+PyyJpZUqVOh5IfKikI+fekCDjRGuYtLaH3qdjI1u8KOJZKXVBQMYZlje0nZJ4gvvIhIeXXW2tlUG+P/PFeKC1y7opF5Y3TJQPLLopmVXHrWdJ6tG8Mz7kJ//ILWxrBjieQdFQVDWNuzd0KiiIJTLs1aG0/uj/Pjl4qpLHL5p1MbmVKukQolP73zrBksnDGGu04s5ZV6h5aHf4LnqsAV6QsVBUNUet9GMns3ULD8nTiFpYO+/4wLd9pCfrm5mHlj0nxxZSOjC9VBS/JXJOLw6UsXUFZcwK3JS2jYu422NXeFHUskr2T/hnfp0ugxJcSiXddknpth/72/ITaqmonnvhsnFh+0djMZl/o2h5s2FLPjeIwLp7Zx2exWuokiMmRUVZX1vA7wlU+s4ss/fpI7ii/jY+vuYPSs+ZQuOKvP+8qkUhw7rlscZWRRURCSWDTCjdff0eVzE5O7WNSyh3VFp/OHG387qO2e8/aL+PazpbSmHT65qJlTdYeB5Il9D/6iV+uVAu+ZleDOrUVMqTiVi+77b45tfuHVCcSKSwpobmrrcT+TL7kSUFEgI4uOD4eYqJdiTusGjkcrORyfMmj79TzYcTzKV254ioKox5dWNaogkGHrvClJVoxL8vv6eWzLTCS9c40mThLpBRUFQ8ys1k0kvFa2FJ4CgzRQUWsanj0UZ0tdnNMXTeCfVzUyqVQdCmX4chz4yPwWxhW7/LzxbOrbHNK71uJ5+tyLnIyKgiGkOHOCqcmt7I/P4ERszKDs81BThMf3F3C8LcKSsSn+6cqVFA9eFwWRIaswBp9a0kxbJsrPk28hfeIomX0vhx1LZEgLpU+BMeZfgA8EDx+w1n6pi+c/CdQFi26y1v44hxFzz/OY1/oiGWJsL1w84N0lM7CpNs7+pigVCZdl1SlK417Wh0kWGUomlrpcsaCFn20s5YGC83lnzSO0lY+CisG7NCcynOS8KDDGXAS8GTgF8IA/GmMus9be02G1lcAHrbVP5zpfWKrSBxibPsyWwmUkI4UD2tehpggba+MkMzB7VJo5o9JEVAvICLVqfIodx9t4eN9kplYtYdmOF4nNLsjqgGAi+SqMMwUHgWuttUkAY8xmYGqndVYCXzHGTAMeB75orR223YAjXgbT8hKNkXL2Jmb3ez+tadh8LM6BpijlCZdTx6WoKNDYAyLvm9vKvoYov6xdSnVVHRN3PkfMnE2kqDzsaCJDSs6LAmvtqxf1jDFz8C8jnNVhWSnwIvCPwHbgVuA64Ku9baOycvAH+xksHe+Pjif8t39602aKvSZeKr+AWCLR5326Huw67rD5aATXg3mVGeZWekScaJfrF5cU9Gn/fV2/K+2vNZfysc3+bB/268xV+wP9HP7t6Wm+8dcoN9efw7Vl91O2cw3Fyy4kkuj+zFxvxjMQGU5CG6fAGLMQeAD4R2vttvbl1tpG4G0d1vs+cAt9KApqaxtx3aF3hFxVVUZNTcOrP6eSaYozJ5jW/DIH41M4wlhI9m0iorpWh421cU4kI4wtyrCwMk1p3COTgu4GeO3NPdrtentP98mMAVJ9fF2DId/ajCdi/do+zNfZ38z9MdDPYQL4zJI0319bws/a3sJnM/fQsPEJYnPOwom8sYAeA6/+vvaWigjJd6HcfWCMOQt4GPhna+3POz031RjzyQ6LHGB43lDveSxoeZ4MUWzhsj5t2paBdTUxVh8sIJlxWF6dZNU4vzOhiHRtWnmGTyxLse1EEfdG34rXVEd69wt4nn5vRCCcjoZTgHuBy621j3SxSgvwXWPMo8Bu4PPAPV2sl/cmpXYxJlPDy0UrSUaKerVNxoWd9VF21MdwPZhZ4XckjOnmUpFeOWuKy87aNh7aM4ZJk87l9ON/JbN3PdEpS3R3jox4YVw++CJQCPzAGNO+7EbgncDXrbVrjTGfAe7HP+P3JPD9EHJmVbqxjrkt6zgWrWJ/fEaP63se7GuMYutitGUcxhdnMGPSOjMg0g+XzW5lf0OEOw9MZdzUU5hx9EWceAHRCfPCjiYSqjA6Gv4t8LddPHVjh3XuBu7OWagQ1P75FiJk2FS08qQjF3oe1LRE2HIsRkMqwqgCl+XVScZoRkORfos48DeLm/nuc6XcdGAh105oovKghVgB0aqei3SR4UonnUOQ3vMSTZtXs7NgAc3RrjsmeR7UNEdYfTDBc4cTpD04pSrJmRNUEIgMhpI4fH5ZMw5wY82pNJdMJrN3PW7dgbCjiYRGRUGOea2NtD7+MxLVU9ldYN74vAdHW/xiYM3hBG1ph8WVKc6bnGRiqTtY0yGICFBd7HL10maOtUW4+cTZpIvHkt79PG5DTdjRREKhqZOBilHFJOJd39M/mDzPw3vul3htTVR9+Dq8u9Z0eA5qWyNsrYtR1xahMOqxqDLF5LIM0UEsBDIZN5gStvcGZxYGkf7rz+f2ZDp+picDkXn7+e5ta7l32ie4vPXXZPa8QPNeC4UTB61NkXygogBIxKPc9Nt1WW9nausW5ux6mu1VFzBz/AxgDZ4Hh5sj7KiPcbwtQkHUY2FliimDXAy0i0Yj3Hj9Hb1efzDuQ7/6mssHtL1IXz+3J9PdZ9qMjvLE+sMcKT+djycepOa336PoQz/QHQkyoqgoyJGCVD0zXrmf40WTeaXyTFJpl70NUXbUR2lKRSiKuX4xUJohqos6Ijk3qyJDc8rBnijiN5Vv4UuXzKFZBYGMMCoKcsDxXBbt/y2Ol2HduHex7UADV33rLxw7Eac84bKsKsmEEleTFomEyHFg0dg0LWmHF2uL2ZSewvSwQ4nkmI5Jc2BGzWOkG+v4eeR9/G5dI5t21zG5upRV45K8aWKSSaUqCESGgogDK8alKE94/PBXL2qkQxlxdKYgizzPo+3wLh56Jc7G1GU4jsPEymJmTiznSx9bNWjXSEVk8MQicNqEJBe/81z1J5ARR0VBFmQyLvuONrF7/3HqWyIUO+OYO6mc+bOq8DJu2PFEpAfxCMybPqbPEyKJ5DsVBYOoqTXFnkONvHK4gWTaZVysgbeUbsadez7JokqKC+M0DXCmNxERkWxRUTBArudx5FgLuw83cKSuBYDxY4o4P76eVcmnWT/lg9QWVYWcUkREpGcqCvqptS3NniON7DnUQGsyQ2EiytwpFUwbV8a8hmeZXfM0O6rPo7ZsbthRRUREekVFQR94nkdNfSt7DjVwqLYZD6gaVcjimWMYN6aYiOMwrn4Ds2se5lD5QnZXnh12ZBERkV5TUdALbakMe4OzAk2taRKxCDMnlTNtXBmlRfFX1xvdtIsFB+6jrngamya866SzH4qIiAw1Kgq64Xkexxra2HOogQNHm3A9GFNegJk6igmVJUQ7DSxQ1nKAxfvupDlRyfrJH8CL6K0VEZH8om+uTlJpl301jew+1EBDc4pY1GHa+DKmjSujvCTR5TalrYc45ZXbSEeLeGnqh0lHi3KcWkREZOBUFASON/pnBfbVNJFxPSpKEiydXcmksSXETjIZQUnbEU555TYykQQvTP0obfGKHKYWEREZPCO+KKg53sJ3bn+Bra8cJxpxmDS2hOnjyxhVVtDjtmUtB1i295d4RHlh6kdpTYzOQWIREZHsGPFFwYnmJIWJGItmjGFKdQnxWLRX241u2sWSfXeQihbz4tSP0JIY0/NGIiIiQ9iInxBp1sQKvvXZs5g5sbzXBcG4+g0s23s7rfEK1k77hAoCEREZFkb8mYI+8Txm1TzC9NqnqCueyvrJl6tToYiIDBsqCnoplmlhwYF7qWrcxv5Ry7HjL8FzendmQUREJB+oKOiFUc17WLj/HhLpRuy4t7Jv9KkamEhERIYdFQUnEXHTzDj6V6bVrqYlPpq10z9JQ9HEsGOJiIhkhYqCboxq2s28Qw9QkqzlQMUyto57C5loz7cpioiI5CsVBZ0UJuuYXfMI4068TEt8FC9M/Qh1JTPDjiUiIpJ1KgoCiVQD046tZnLdWjwcdo09m92Vb8KNxHveWEREZBgY8UWBl2rl6B9/zZk7/kLEczlYsYSdVefTFi8PO5qIiEhOjfiiIHNgC40vPcShiqXsqTxTAxGJiMiINeJHNIxNW8aMf/oVWya8QwWBiIiMaCO+KABwHL0NIiIioVw+MMZ8GPgaEAf+y1r7407PLwNuBsqBx4GrrbXpXOcUEREZSXJ+iGyMmQR8C3gTsAz4tDFmQafVbgOusdbOBRzgUzkNKSIiMgKFcabgIuARa+0xAGPMXcD7gH8LHk8Diqy1zwTr3wr8K/CTXuw7ChCJ9H0I4tLi7N96WFwYx/HcVx+XlRVnvc2u9KXdWDxGOjXwkzRhvNZ8a7O/73WYr3OwPh99aXOg+pK5H39LpgP7AJ3ZlLzkeJ6X0waNMV8GSqy1XwseXwWsstZ+Onh8BvA9a+2bgsezgT8EZw168ibgiewkFxHplRnA7rBDiPRHGGcKIkDHSsQB3D48fzLPAWcDB4HMADKKiPTXvrADiPRXGEXBPvwv7nbjgQOdnp9wkudPpg14ckDpRERERqgw7sV7CLjQGFNljCkG3gv8sf1Ja+0eoNUYc1aw6KPAg7mPKSIiMrLkvCiw1u4Hvgo8CrwE3G6tXWOM+YMxZmWw2hXAD40xW4BS4Ee5zikiIjLS5LyjoYiIiAxNGspPREREABUFIiIiElBRICIiIoCKAhEREQmoKBAREREgpFkSR4Jg+OZrOiyaAfwvcC/wA6AIuKN9uOehwhjzEeDLwcMHrbVfNMZcxNDO/M/AJ/AHr7rDWvutoZrZGFMOrAbeYa3d3V3OoTRTaOfMwbJf4M9hcmvweCr+RGbVgAWusNY2hpE3yNP5ff408AX80VLXAp+x1iaH0vssMhToTEGWWGtvttYus9Yuwx934Qjwn8AtwLuA+cCpxphLwkv5esFgUj8CzgWWAmcbYy5laGe+CPgwcCpwCnCaMeYKhmBmY8xp+CNuzg0eF9F9ziExU2gXmScaY+7Hn8SsoxuAG6y18/C/dK/LadAOusg8F/hH4ExgCf7fvc8Hqw+J91lkqFBRkBs/Ab4CzAS2WWt3BUcjtwHvDzXZ60XxPxMlQDz4d4KhnfkU4E/W2hPW2gz+6JhXMTQzfwr/y6h92O5VdJGzm5lCw8rfOfMVwH3Ane0rGGPiwDnAXcGiWwn3/e6cuQ34XPAZ8YANwNQh9j6LDAkqCrIsOJItstb+BpiIP1lTu4PA5FCCdcFa24B/hLcFfw6K3QzxzMALwFuMMWOMMYXAO/Fnyxxyma21V1lrO87i2d17O2Te886ZrbXfs9be3Gm1scCJDqfdQ32/u8i8x1r7FwBjTBX+Zb37GELvs8hQoaIg+z6Df80YBjYDZNYZY5YAnwSm4f/BzOCfgh2yma21D+Mf4T2Gf5bgSfy+MkM2cwfdfR6G9OekC53zwhDMa4yZBDwM/NRa+xj59z6LZJ2KgiwyxiTwr8//Llg0kBkgc+EtwMPW2iPW2jb8L9vzGMKZjTFlwN3W2iXW2vPwTxU/xhDO3EF3n4eh/jnp7AhQYYyJBo8nMMTyGmPm4Xc8/Lm19pvB4nx7n0WyTkVBdi0Btlprm4LHzwLGGDM7+AP6YYbWDJDrgIuMMSXGGAe4lKGfeQZwnzEmZoypAP4G+BpDO3O7Lt/bfJsp1FqbAp4ALg8WXckQyhsUjn8Gvmat/X778nx7n0VyQUVBds3EPxoBwFrbCnwcuBvYhH/t/q4utwyBtfbPwK+A54H1+B0Nv8HQzrweP9t6YA3wX9bapxjCmdv18HnIt5lCPwd82hizCTgbvzAbKq4CxgHXGmNeCv79W/Bcvr3PIlmlWRJFREQE0JkCERERCagoEBEREUBFgYiIiARUFIiIiAigokBEREQCKgok54wxK40xJ71F0BjzdWPMu7LZtjHmVGPMjYPdhohIvtLUyZJz1tq1vHGWvc4uwL93P5ttL0Rj3YuIvErjFEjOGWPOA67Hn2L3BLAYmII/ANGVwMfwp5muAf4BeCB4fC7+TI4vAl+w1p4wxuzGH475QmAq8Atr7XXGmFLgZ8Ac/PHsn8efh+KcoO1LgKeACuC3QBo4Yq39apDxI8B7rbWXneR13Ao0B/nH4Q9nXYs/EuR44Cpr7SPBcNfd5X8H/gyaCaAafxje64L36FvATmAR/kBSnwkGZhIRyQpdPpCwrQDeCswHpgPvt9b+GL9g+Edr7T3AP+N/aa+w1i7FH5/+Ox32UWqtPRs4E/iiMWYGcBlQZq1dBpwarDezfQNr7V7g68AT1tpPAD8GPmGMaT979mmgN5cWluOf1TgHuBZotNaeCfx3kJvu8gdDSV8LfMxauxI4HfiyMWZssN1pwPettafgFzjf7kUeEZF+U1EgYfujtbYtGD9/AzCmi3XeAbwLeNEY8xLwbmBBh+fvA7DW7sefnGcM/myJC40xj+F/Kf+XtXZ7dyGstS8Bu4C3G2Pm488S+ede5L/fWpuy1h4CmvBnagTY0eG1dJnfWuvhn1VYYYz5F/zZNB2gJNhuT5AL/Cmiu3pvREQGjfoUSNhaOvzs4X8pdhYF/tZa+yBAcGmg8GT7sNbuMsbMxp/l8QLgIWPMp4GGk2T5Mf7U0VuB/wm+tHvS1ulxqrf5jTEl+JcS7sGfUOgW/IKh/T3ozXsjIjJoVBTIUJXGv44O8CfgGmPMw8Hym4BG4FPdbWyM+Sz+xDxXWGv/ZIwZh3+q/6/dtAH+ZETfwZ/d8lQGT3f5fwyU48/elzTGfBQowC8iRERyTpcPZKj6HfAfxpiPAd8EduMfVW/CP2K+toftf4H/5brJGPM8fofCzjPgPQPMNMb8FsBam8QvDFZba48O0uuA7vOvB34PbDHGbMa/lLAJmD2IbYuI9JruPhAJBKfzHwc+b619Juw8IiK5pssHIoAx5i3Ar4Ab2gsCY4wB7uhmE2utvTxX+UREckFnCkRERARQnwIREREJqCgQERERQEWBiIiIBFQUiIiICKCiQERERAL/P0bLv9Tlv1wWAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.displot(data = df, x=\"intensity_mean\", hue=\"file_name\", kde=True)" ] }, { "cell_type": "markdown", "id": "05dd40e3-4b9a-44b8-8bfc-610f79809d06", "metadata": { "tags": [] }, "source": [ "## Exercise" ] }, { "cell_type": "markdown", "id": "4acf97f1-efcb-4f27-851f-643e3bfa0bae", "metadata": {}, "source": [ "Plot two empirical cumulative distribution functions on a same graph with different colors for the properties 'intensity_mean' and 'area'.\n", "\n", "*Hint: look for the `kind` parameter of `displot`" ] }, { "cell_type": "code", "execution_count": null, "id": "9ee0c368-7b49-4f24-86a7-8ab65873f72f", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 5 }