Feature Extraction in Python Bio-image Analysis, Bio-stats, Programming & Machine Learning for Comp. Bio. 02 May 2023

Allyson Quinn Ryan, PhD

Contributors:

object classification & science communication

https://focalplane.biologists.com/author/marabuuu/

- Allyson Quinn Ryan
 - Robert Haase
 - Carl D. Modes
 - Mara Lampert

network complexity & systems biophysics

Topology: scale-free invariant features.

algebraic topology

persistent homology

Topology: scale-free invariant features.

algebraic topology

persistent homology polygonal meshes

neighbourhood analysis collaborations

(Wolfram Alpha; 'Solutio problematis ad geometriam situs pertinentis' — L. Euler, 1736)

network topology

digital topology

image segmentation connected components

What is an image feature?

a quantification or relationship that describes your system

What do we need to consider first?

neighbourhoods, structuring elements & feature categories

Neighbourhoods & Structuring Elements

structuring elements are also often referred to as kernels

5

Intensity: all foreground objects

mean, minimum, maximum, standard deviation, etc.

Intensity: individual objects

mean, minimum, maximum, standard deviation, etc.

labeled_comprehension

Size, Shape & Measurement Robustness

- 40 - 35 - 30 - 25 - 20 - 15 - 10

Perimeter Calculation

sphericity
$$\psi = \frac{\pi^{1/3} (6V)^{2/3}}{SA}$$

$$R = \frac{4\pi A}{P^2}$$

$\sqrt{2}$	1	$\sqrt{2}$
1		1
$\sqrt{2}$	1	$\sqrt{2}$

Perimeter Calculation

150 -

200 -

250

50

$\sqrt{2}$	1	$\sqrt{2}$
1		1
$\sqrt{2}$	1	$\sqrt{2}$

skeletonize

What if your object has a dent?

Meshes are concavity friendly tools.

Vedo enables quick feature extraction.

mesh_volume = mesh_gastruloid.volume()

sphericity

0.5903099128683961

nppas.SurfaceTuple

n (z/y/x)	[0. 0. 0.]
ss(z/y/x)	57.605,308.700,440.973
le(z/y/x)	1.000,1.000,1.000
s (z/y/x)	13.911112.189 111.132461.732 169.884807.977
age size	170.787
vertices	3309
of faces	6614

$$\psi = \frac{\pi^{1/3} (6V)^{2/3}}{SA}$$

 $mesh_surface_area = mesh_gastruloid_area()$

sphericity = sphericity(mesh_volume, mesh_surface_area)

Convex Hulls as comparative objects

$$S = \frac{V_{obj}}{V_{ch}}$$

solidity

nppas.SurfaceTuple

n (z/y/x)	[0. 0. 0.]
ss(z/y/x)	56.991,308.755,432.733
le(z/y/x)	1.000,1.000,1.000
s (z/y/x)	13.911112.189 111.132461.732 169.884807.977
age size	224.553
vertices	818
of faces	1632

related structures are the Delaunay triangulation & the Voronoi diagram

positional features

Is there interest in positional features?

- centroid
- centre of mass

 $\boldsymbol{R} = \frac{1}{M} \iiint_{O} \rho(\boldsymbol{r})\boldsymbol{r}dV$

- bounding box
- number of neighbours
- giant component fraction

 $\mathbb{E}[k^2] - 2\mathbb{E}[k] > 0 \text{ or } G'(1) = 1$

Important Documentation & Reading

skimage.measure offers many functions for feature extraction from images (particularly region props):

https://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.regionprops

vedo.mesh is useful for shape, size and positional feature extraction:

https://vedo.embl.es/docs/vedo/mesh.html

pyclesperanto_prototype offers many example workflows for intensity, size and positional features:

https://github.com/clEsperanto/pyclesperanto_prototype

Keep an eye on **FocalPlane** for Mara's upcoming feature extraction blog!

https://focalplane.biologists.com/