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Lecture overview: Bio-image Analysis

• Image Data Analysis workflows

• Goal: Quantify observations, substantiate conclusions with numbers

Image filtering Image segmentation Feature extraction Object classification

Plotting

Bio-image analysis Bio-statistics

Image filtering
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Images and pixels

• An image is just a matrix of numbers

• Pixel: “picture element”

• The edges between pixels are an artefact of the imaging / digitization. They are not real!

0 255
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Pixel size versus resolution

• Pixel size is a digital property of an image.

• You configure it during the imaging session at the microscope.

Pixel size: 3.3 µm Pixel size: 0.8 µm Pixel size: 0.05 µm 

• We are not talking about resolution!
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Pixel size versus resolution

• Resolution is a property of your imaging system.

• The measure of how close object can be in an image while still being differentiable, is called 
spatial resolution.
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Image stacks and voxels

There are tools available for exploring them

https://github.com/haesleinhuepf/stackviewhttps://napari.org/

https://github.com/haesleinhuepf/stackview
https://napari.org/
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Image stacks and voxels

• 3-dimensional 
images consisting 
of voxels

• “Image stack”

• Often anisotropic 
(not equally large 
in all directions)

𝑙𝑥

𝑙𝑦

𝑙𝑧

𝑙𝑥 = 𝑙𝑦 ≠ 𝑙𝑧
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Anisotropy

• Voxel size has immediate impact on image quality and thus, on processing / analysis results.

1:1

250 x 250 px

1:2

250 x 125 px

1:5

250 x 50 px

1:10

250 x 25 px

Image source: cropped from
https://de.m.wikipedia.org/wiki/Datei:Histo_Lungenpest.jpg

https://de.m.wikipedia.org/wiki/Datei:Histo_Lungenpest.jpg
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Bit-depth

• A bits is the smallest memory unit in computers, atomic data.

• The bit-depth n enumerates how many different intensity values are present in an image:

• 2n grey values

• In microscopy, images are usually stored as 8, 12 or 16-bit images.

1 2 3 4 5 6 7 8 1 2 16
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Colormaps / lookup tables

• The lookup table decides how the image is displayed on screen.

• Applying a different lookup table does not change the image. All pixel values stay the same, they just 
appear differently

Pixel value Display color

0
1
2
…
255

Pixel value Display color

0
1
2
…
255

Pixel value Display color

0
1
2
…
255
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Colormaps / lookup tables

• Choose visualization of your color tables wisely!

• Think of people with red/green blindness!

Common view Red/green blind people may see it like 
this

Replace red with 
magenta!
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Colormaps / lookup tables

• Which intensity does the marked pixel have?
0
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256

192

128

0 64 128

0
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256

192
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192
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Histograms

• A histogram shows the probability distribution of pixel intensities.

• The probability of a pixel having a certain grey value can be measured by counting pixels and 
calculating the frequency of the given intensity.

• Whenever you see a histogram, try to imagine the lookup-table on the X-axis
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Histograms

• Histograms are 
summaries of images

• Tell stories, e.g. about 
image quality
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Histograms

• To which of the three images does this histogram belong to?
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Filters

• An image processing filter is an operation on an image.

• It takes an image and produces a new image out of it.

• Filters change pixel values.

• There is no “best” filter. Which filter fits your needs, depends on the context.

• Filters do not do magic. They can not make things visible which are not in the image.

• Application examples

• Noise-reduction

• Artefact-removal

• Contrast enhancement

• Correct uneven illumination

Image source: Alex Bird / Dan White MPI CBG

Filter
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Effects harming image quality

• Image formation (simulated)

“nuclei” “background” “noise”

• Aberrations, defocus
• Motion blur

• Light from objects 
behind and in front of 
the scene (out-of-focus 
light)

• Dirt on the object slide
• Camera offset

• Shot noise (arriving photons)
• Dark noise (electrons made 

from photons)
• Read-out-noise (electronics)

https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/49a787514a367829c3e0e1832f6cc533e96d549f/03_image_processing/simulated_dataset.ipynb

https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/49a787514a367829c3e0e1832f6cc533e96d549f/03_image_processing/simulated_dataset.ipynb
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Effects harming image quality

• Image formation (simulated)

Segmentation

“nuclei” “background” “noise”

https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/49a787514a367829c3e0e1832f6cc533e96d549f/03_image_processing/simulated_dataset.ipynb

https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/49a787514a367829c3e0e1832f6cc533e96d549f/03_image_processing/simulated_dataset.ipynb
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Image filtering

• We need to remove the noise to help the computer interpreting the image

Segmentation

Oh no! I see thousands 
of tiny white objects!

Segmentation

Filtering

Ok, it’s just 9 objects.
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Image filtering

• Attempt to invert / “undo” processes disturbing image quality

?
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Image filtering

• Attempt to invert / “undo” processes disturbing image quality

Denoise

Denoise

Remove 
background

͌

Low-pass filter: 
Allows low 

frequencies pass

High-pass filter: 
Allows high 

frequencies pass

Band-pass filter: 
Allows a specific range 

of frequencies pass

https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/49a787514a367829c3e0e1832f6cc533e96d549f/03_image_processing/simulated_dataset.ipynb

https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/49a787514a367829c3e0e1832f6cc533e96d549f/03_image_processing/simulated_dataset.ipynb
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• Linear filters replace each pixel value with a 
weighted linear combination of 
surrounding pixels

• Filter kernels are matrices describing a 
linear filter 

• This multiplication of surrounding pixels 
according to a matrix is called convolution

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Linear Filters

Mean filter, 3x3 kernel

Animation source: Dominic Waithe, Oxford University
https://github.com/dwaithe/generalMacros/tree/master/convolution_ani

https://github.com/dwaithe/generalMacros/tree/master/convolution_ani


@haesleinhuepf April 2023

Linear filters

• Terminology:

• “We convolve an image with a kernel.”

• Convolution operator: *

– Examples

– Mean

– Gaussian blur

– Sobel-operator

– Laplace-filter

1 1 1

1 8 1

1 1 1

0 -1 0

-1 4 -1

0 -1 0

* 

* 

=

=
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• Non linear filters also replace pixel value inside as 
rolling window but using a non-linear function.

• Examples: order statistics filters
– Min
– Median
– Max
– Variance
– Standard deviation

75 85 60

67 73 91

50 88 59

[ 50  59  60  67  73  75  85  88  91 ]

Min Median Max

Nonlinear Filters
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Noise removal

Image source: Mauricio Rocha Martins (Norden/Myers lab, MPI CBG)

• Gaussian filter

• Median filter (computationally expensive)
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Filtering for improving thresholding results

• In case thresholding algorithms outline the wrong structure, blurring in advance may help.

• However: Do not continue processing the blurred image, continue with the original!

Contour on 
original image

Thresholding 

Blurring + 
Thresholding ☺
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Difference-of-Gaussian (DoG)

• Improve image in order to detect bright objects.

• Band-pass filter

Gaussian blur (sigma = 2)

Gaussian blur (sigma = 6)

Noise reduced image

Background image

subtract

DoG-Image 
“dog-2-6”

Original image



@haesleinhuepf April 2023

Difference-of-Gaussian (DoG)

• Example 
DoG
images
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Laplace-filter

• Second derivative of a Gaussian blur 
filter

• Used for edge-detection and edge 
enhancement

• Also known as the Mexican-hat-filter

1st derivative 2nd derivative



@haesleinhuepf April 2023

Laplacian-of-Gaussian (LoG)

0 -1 0

-1 4 -1

0 -1 0* =

0 -1 0

-1 4 -1

0 -1 0* =

La
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la
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er
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n
 f

ilt
er

Laplace filtered image

LoG image
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Top-hat filter

• Background subtraction

Minimum Maximum Subtract
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Top-hat filter

• Background subtraction

Minimum Maximum Subtract
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Quiz: Noise removal

• The median filter is a …

Linear filter

Non-linear filter

Median
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Background removal

• Removing background from an image is a … ?

Image source: Mauricio Rocha Martins (Norden/Myers lab, MPI CBG)

Subtract 
background

Low-pass 
filter

High-pass 
filter
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Short detour: Segmentation

Thresholding

• Very basic and yet efficient segmentation technique

• Histogram based, to determine an intensity threshold

• Not state-of-the-art in many fields (anymore)

?

Intensity image Binary image
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Thresholding: Otsu’s method

• Searching for a threshold where the variance in both classes (above/below threshold) becomes minimal.

Below threshold
Above threshold

𝑉𝑎𝑟(𝐼) =෍

𝑖 ∈𝐼

𝑔𝑖 − ҧ𝑔𝐼

𝑉𝑎𝑟(𝐼) … Variance in image I
gi … grey value of a pixel i
ത𝑔𝐼 … mean grey value of the whole image I
𝑛𝐼 … number of pixels in Image I

ҧ𝑔𝐼 =෍

𝑖 ∈𝐼

𝑔𝑖
𝑛𝐼
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Thresholding: Otsu’s method

• Searching for a threshold where the variance in both classes (above/below threshold) becomes minimal.

Below threshold
Above threshold

𝑉𝑎𝑟(𝐼) =෍

𝑖 ∈𝐼

𝑔𝑖 − ҧ𝑔𝐼

𝑉𝑎𝑟(𝐼) … Variance in image I
gi … grey value of a pixel i
ത𝑔𝐼 … mean grey value of the whole image I
𝑛𝐼 … number of pixels in Image I

ҧ𝑔𝐼 =෍

𝑖 ∈𝐼

𝑔𝑖
𝑛𝐼
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Thresholding: Otsu’s method

• Searching for a threshold where the variance in both classes (above/below threshold) becomes minimal.

Below threshold
Above threshold

𝑉𝑎𝑟(𝐼) =෍

𝑖 ∈𝐼

𝑔𝑖 − ҧ𝑔𝐼

𝑉𝑎𝑟(𝐼) … Variance in image I
gi … grey value of a pixel i
ത𝑔𝐼 … mean grey value of the whole image I
𝑛𝐼 … number of pixels in Image I

ҧ𝑔𝐼 =෍

𝑖 ∈𝐼

𝑔𝑖
𝑛𝐼
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Thresholding: Otsu’s method

• Searching for a threshold where the variance in both classes (above/below threshold) becomes minimal.

• Weighted (!) sum variance

Below threshold
Above threshold

𝑉𝑎𝑟′(𝐼) =
𝑛𝐴

𝑛𝐼
𝑉𝑎𝑟(𝐴) +

𝑛𝐵

𝑛𝐼
𝑉𝑎𝑟(𝐵) 𝐼 = 𝐴 ∪ 𝐵
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Thresholding: Otsu’s method

• Searching for a threshold where the variance in both classes (above/below threshold) becomes minimal.

• Weighted (!) sum variance

Weighted sum variance

𝑉𝑎𝑟′(𝐼) =
𝑛𝐴

𝑛𝐼
𝑉𝑎𝑟(𝐴) +

𝑛𝐵

𝑛𝐼
𝑉𝑎𝑟(𝐵) 𝐼 = 𝐴 ∪ 𝐵
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Thresholding: Otsu’s method

• Searching for a threshold where the variance in both classes (above/below threshold) becomes minimal.

• Weighted (!) sum variance

Weighted sum variance

𝑉𝑎𝑟′(𝐼) =
𝑛𝐴

𝑛𝐼
𝑉𝑎𝑟(𝐴) +

𝑛𝐵

𝑛𝐼
𝑉𝑎𝑟(𝐵) 𝐼 = 𝐴 ∪ 𝐵

See also: http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html
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Thresholding: Citing

• Cite the thresholding method of your choice properly

“We segmented the cell nuclei in the images using
Otsu’s thresholding method (Otsu et Al. 1979)
implemented in scikit-image (van der Walt et al.
2014).”
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Refining masks

• Binary mask images may not be perfect immediately after thresholding.

• There are ways of refining them

Thresholding Closing Opening
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Erosion

• Erosion: Every pixel with at least one black neighbor becomes black.

Erosion
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Dilation

• Dilation: Every pixel with at least one white neighbor becomes white.

Dilation

Dilation

8-connected neighborhood

4-connected neighborhood
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Opening

• Erosion and dilation combined allow correcting outlines.

Erosion Dilation

Opening

• It can separate white (high intensity) structures that are weakly connected
• It may erase small white structures
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Closing

Dilation Erosion

Closing

• It can connect white (high intensity) structures that are nearby
• It may close small holes inside structures

• Erosion and dilation combined allow correcting outlines.
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Chaining erosion and dilation

• Erosion: Set all pixels to black which have at least one black neighbor.

Erosion Erosion Erosion

Dilation Erosion

• Closing: Dilation + Erosion 

Dilation Dilation Dilation

• Dilation: Set all pixels to white which have at least one white neighbor.

• Opening: Erosion + Dilation
Slide adapted from Haase, Lombardot, Scientific Computing Facility, MPI CBG, licensed CC BY-NC 4.0

https://creativecommons.org/licenses/by-nc/4.0/
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Working with images in python

• Open images

Images are just multi-
dimensional arrays or 

“arrays of arrays”.

https://matplotlib.org/

https://numpy.org/

https://matplotlib.org/
https://numpy.org/
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Working with images in python

• Open images • Visualize images

This does not modify 
the image data. The 

images are just shown 
with different colors 

representing the same 
values.
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Brightness, contrast, display-range

• After loading data, make sure you can see the structure you’re interested in
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Cropping and resampling images

• Indexing and cropping numpy-arrays works like with python arrays.

Original image

Sub-sampled image

Cropped image

Flipped image
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Cropping and resampling images

• Crop out the region you’re interested in

Interesting

Not 
interesting

In this case 
you can spare 

8/9 compute time for 
following processing steps

Image data source: Nasreddin Abolmaali, TU Dresden
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Filters

… are just functions

https://scikit-image.org/

https://scikit-image.org/
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Filters

• Use every opportunity and play with filter parameters to get an idea 
what they do.



@haesleinhuepf April 2023

Filters

• Use every opportunity and play with filter parameters to get an idea 
what they do.

https://github.com/haesleinhuepf/stackview#interact

https://github.com/haesleinhuepf/stackview#interact
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Filters

… are just functions
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Filters

... may be custom functions

Recommendation: Apply custom filters to super simple 
images to see if they do the right thing.
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Binarization / Thresholding

• Turn images into binary images 
(very basic form of segmentation)

• When using scikit-image, 
threshold_ functions typically 
return a threshold you need to apply 
yourself.
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Morphological operations

• To morph objects in binary images
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Napari: 3D viewer for Python

• Multi-dimensional image viewer in Python

https://napari.org/

https://napari.org/
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Napari: 3D viewer for Python

68
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Napari user interface

69

View configuration / 
tools

Layers

Dock widgets 
(custom plugins)

Function widgets 
(custom plugins)

layer.opacity = 0.5

layer.visible = False

https://napari.org/tutorials/fundamentals/viewer.html

Viewer controls

https://napari.org/tutorials/fundamentals/viewer.html
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Visualizing image segmentation

• Different layers have different configurations
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Using Napari from Python Code

• A great mix of interactivity and reproducibility
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Scripting napari

• Initialization

import napari

# Create an empty viewer

viewer = napari.Viewer()

• Adding images

viewer.add_image(image)

72
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Scripting napari in notebooks

• Make screenshots from napari and put them in your jupter notebook

napari.utils.nbscreenshot(viewer)

Place your viewer here

73
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Working with layers

• Removing layers

for l in viewer.layers:

viewer.layers.remove(l)

• Modify visualization while adding layers

viewer.add_image(image,

colormap='green’)

• Modify layers after adding

layer = viewer.add_image(image)

layer.colormap = 'green’

layer.contrast_limits = (0, 128)

74
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Visualizing image segmentation

• Binary images and label images visualized as label layers

from skimage.filters import threshold_otsu

threshold = threshold_otsu(blurred_image)

binary_image = blurred_image > threshold

# Add a new labels layer containing an image

viewer.add_labels(binary_image)

75
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Summary

• Image visualization

• Pixel size, colormaps, bit-depth

• Image histogram

• Brightness/Contrast

• Image Filtering

• Morphological Operations

• Mask Refinement

• Python libraries

• Matplotlib

• Scikit-image

• Napari

Coming up next

• Image Segmentation
• Connected component analysis
• Voronoi-Otsu-Labeling

• Surface reconstruction
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