
@haesleinhuepf

Good practice in scientific programming
Robert Haase

April 2023

This material is licensed by Robert Haase, PoL Dresden under the

CC-BY 4.0 license https://creativecommons.org/licenses/by/4.0/

#OpenScience

#OpenSource

Reusable

Accessible

Sustainable

https://creativecommons.org/licenses/by/4.0/

@haesleinhuepf 2

Document what you use

• Installation instructions enable reproducible science

• Not necessary as detailed as a blog-post

https://biapol.github.io/blog/mara_lampert/getting_started_with_ma

mbaforge_and_python/readme.html

You should at any

time be able to

rebuild the

environment you’re

working with.

https://biapol.github.io/blog/mara_lampert/getting_started_with_mambaforge_and_python/readme.html
https://biapol.github.io/blog/mara_lampert/getting_started_with_mambaforge_and_python/readme.html

@haesleinhuepf 3

Document what you use

Maintain a document with the dependencies (and versions) you need in your project!

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-

environments.html#creating-an-environment-from-an-environment-yml-file

https://pip.pypa.io/en/stable/cli/pip_install/#examples

conda env create -f environment.yml

In case your

environment is screwed

up, you can rebuild it

any time.

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
https://pip.pypa.io/en/stable/cli/pip_install/#examples

@haesleinhuepf 4

Document what you use

… the complete way.

conda env export > environment.yml

Excellent way to

document all

dependencies were

actually used…

It is questionable if re-

creating an

environment from this

yml file works.

Software quality indicators
… to differentiate the good stuff from the bad.

5

@haesleinhuepf 6

Target audience

• Documentation should tell who is the target audience and
how far it is developed

https://clij.github.io/

https://github.com/clEsperanto/pyclesperanto_prototype

https://github.com/haesleinhuepf/napari-mahotas-image-processing

Communication

is key!

https://clij.github.io/
https://github.com/clEsperanto/pyclesperanto_prototype
https://github.com/haesleinhuepf/napari-mahotas-image-processing

@haesleinhuepf 7

Software quality indicators

Visit the project’s github or gitlab page and review indicators.

https://github.com/napari/napari

• Stars: People like software, similarly to tweets on Twitter

• Watching: People receive updates for new releases

• Forks: People made a copy of the code, e.g. to contribute
to the project

• Contributors: People who contributed to the code

• Commits: Changes to the code

https://github.com/napari/napari

@haesleinhuepf 8

Bad example

• No readme / documentation

• No license / copyright
statement

• No stars / users (?)

• Not maintained
(last update 4 years ago)

• bus factor = 1

https://github.com/haesleinhuepf/napari_playground

https://github.com/haesleinhuepf/napari_playground

@haesleinhuepf 9

Software quality indicators

Visit the project’s github or gitlab page and review indicators.

Image source: Adapted from https://www.pexels.com/photo/shallow-focus-photo-of-two-

persons-wearing-military-uniform-2859046/

Note, github badges

cannot be deserved.

Developers put them

there

@haesleinhuepf 10

Software quality indicators

Visit the project’s github or gitlab page and review indicators.

https://github.com/napari/napari/graphs/contributors

https://github.com/napari/napari/graphs/contributors

@haesleinhuepf 11

Software quality indicators

• Community actively
involved

https://image.sc/

https://image.sc/

@haesleinhuepf 12

Openness of software / projects

Choose your project’s level wisely, and communicate it clearly

Closed source Open source Community driven Openly extensible

Read more: https://coiled.io/blog/stages-of-openness/

Benevolent

dictatorship

• Open to collaborations

• “Black box”

• Compiled code (e.g.

C/C++)

• Good for protecting

intellectual properties

($$$)

• Code available to read

• Not necessarily

executable code

• No maintenance /

support efforts

• Open to contributions

• Single maintainer,

often overwhelmed

• Efficient decision

making
• Bus factor ≈1

• Open to contributions

• Partially democratic

• Board of maintainers

(core developers)

• Long-winded decision

making

• Openly extensible;

without maintainers

involved

• Partially community

driven

x=1/y

z=y+1

8

x=1/y

z=y+1
x=1/y

z=y+1

x=1/y

Hardware device

drivers

ImageJ,

Python, numpy
Custom image

analysis scripts

TrackMate, SNT,

MorpholibJ, CLIJ

scikit-image, scipy,

OpenCL

z=y+1

https://coiled.io/blog/stages-of-openness/

@haesleinhuepf 13

Take home message

When using [open-source] software, make sure

• it’s maintained

• used by others

• supported by an active community

• well-documented

This material is licensed by Robert Haase, PoL Dresden under the

CC-BY 4.0 license https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

@haesleinhuepf

Sharing and licensing material
Robert Haase

April 2023

This material is licensed by Robert Haase, PoL Dresden under the

CC-BY 4.0 license https://creativecommons.org/licenses/by/4.0/

Code

Slides

Data

Text

…

https://creativecommons.org/licenses/by/4.0/

@haesleinhuepf 15

Use cases: Data
Unique datasets

Valuable for biologists

Valuable for software developers

Institutional servers / services

https://idr.openmicroscopy.org/

https://zenodo.org

https://rodare.hzdr.de/record/915

https://twitter.com/nKiaru/status/1409194004219142148?s=20

https://idr.openmicroscopy.org/
https://zenodo.org/
https://rodare.hzdr.de/record/915
https://twitter.com/nKiaru/status/1409194004219142148?s=20

@haesleinhuepf 16

Use cases: Manuscripts

Preprints

—Accessible / reusable

—https://arxiv.org/

—https://biorxiv.org/

—https://medrxiv.org/

Journals

https://www.biorxiv.org/content/10.1101/236463v5.article-info

https://arxiv.org/
https://biorxiv.org/
https://medrxiv.org/
https://www.biorxiv.org/content/10.1101/236463v5.article-info

@haesleinhuepf 17

Use cases: Teaching material

Re-using, advertising your work.

https://f1000research.com/neubias

https://figshare.com

https://github.com

https://f1000research.com/slides/10-278 https://github.com/dlegland/mathematical_morphology_with_MorphoLibJ

https://f1000research.com/neubias
https://figshare.com/
https://github.com/
https://github.com/dlegland/mathematical_morphology_with_MorphoLibJ

@haesleinhuepf 18

Use cases: Figures

Share efforts

—Talk about each others’ work

Advertise your work

… because our work is often publicly funded

https://commons.wikimedia.org/wiki/Main_Page

https://figshare.com

https://en.wikipedia.org/wiki/Positron_emission_tomography#/media/File:PET-schema.png

https://commons.wikimedia.org/wiki/Main_Page
https://figshare.com/
https://en.wikipedia.org/wiki/Positron_emission_tomography#/media/File:PET-schema.png

@haesleinhuepf 19

Use cases: Code

Collaboration in open-source projects unthinkable
without openly sharing and transparent licensing

https://github.com/fiji https://github.com/napari https://github.com/bioimage-io

https://github.com/fiji
https://github.com/napari
https://github.com/bioimage-io

@haesleinhuepf 20

Terminology

Data, code,

document,

product

Author

Creator of the work
Copyright holder

E.g. employer

of the author

Do the

work!

World

Publisher

The person who made

the work available

Licensee

The person who uses

/ reuses the material

Acknowledgement, attribution, fees, …

@haesleinhuepf 21

FAIR principles

• Findable

• Accessible

• Interoperable

• Reusable

=> State-of-the-art Research Data Management (RDM)

@haesleinhuepf 22

FAIR principles: Findable

• Research data / code / … can be found if
it’s listed in repositories

• Preferably: global, public, field-
specific repository

• Alternative: institutional repository

• Findability can be improved through
attaching

• meta data

• unique digital object
identifiers (DOI)

https://biii.eu https://bio.tools https://zenodo.org https://opara.zih.tu-

dresden.de/xmlui/

https://biii.eu/
https://bio.tools/
https://zenodo.org/
https://opara.zih.tu-dresden.de/xmlui/
https://opara.zih.tu-dresden.de/xmlui/

@haesleinhuepf 23

Quiz: Digital object identifiers

Which of these is a unique digital object identifier?

https://twitter.com/haesleinhuepf/status/891596662782779392

https://doi.org/10.5281/zenodo.28325

https://github.com/haesleinhuepf/devbio-napari

https://napari.org/

@haesleinhuepf 24

FAIR principles: Accessible

• Research data can be made
accessible (after it was found by
potential users)

• Open Access is just one form of
accessibility

• Authentication enables other
forms

@haesleinhuepf 25

FAIR principles: Interoperable

Data can be opened in multiple
software through open and
documented…

• file-formats

• protocols

hypertext transfer protocol (secure)

@haesleinhuepf 26

FAIR principles: Reusable

Data can be reused if

• Other FAIR principles are
fulfilled

• Data is properly licensed

• copyright statement is given

• No copyright statement
means: You do not have the
right to copy

Image source: @DrHenningFalk, licensed CC-BY 4.0

https://creativecommons.org/licenses/by/4.0/

@haesleinhuepf 27

Licensing: Creative Commons (CC)

Public domain (CC0)

Attribution International (CC-BY)

Attribution ShareAlike Int. (CC-BY-SA)

Attribution Non-Commercial Int. (CC-BY-NC)

Attribution NoDerivatives Int. (CC-BY-ND)

+ Combinations, e.g. CC-BY-NC-ND

https://creativecommons.org/share-your-work/

https://creativecommons.org/about/cclicenses/

Content on this site is licensed under a Creative Commons Attribution 4.0 International license. Icons by The Noun Project.

https://creativecommons.org/share-your-work/
https://creativecommons.org/about/cclicenses/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/website-icons

@haesleinhuepf 28

Licensing: Creative Commons (CC)

Public domain (CC0)

Everyone can reuse without mentioning the source
or author of the shared resource.

Public domain licenses cannot be revoked.

The author must own the right to copy (copyright)
the resource.

—If you authored work as part of your job, you
may not be the copyright holder. (check your
employers' guidelines)

https://creativecommons.org/share-your-work/

https://creativecommons.org/about/cclicenses/

Content on this slide was adapted from https://creativecommons.org/about/cclicenses/ which is licensed under a Creative Commons Attribution 4.0 International license. Icons by The Noun
Project.

Employers don’t like

this one because you

give away the rights to

exploit you work.

https://creativecommons.org/share-your-work/
https://creativecommons.org/about/cclicenses/
https://creativecommons.org/about/cclicenses/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/website-icons

@haesleinhuepf 29

Licensing: Creative Commons (CC)

https://creativecommons.org/share-your-work/

https://creativecommons.org/about/cclicenses/

Content on this slide was adated from https://creativecommons.org/about/cclicenses/ which is licensed under a Creative Commons Attribution 4.0 International license. Icons by The Noun
Project.

“By attribution”

https://creativecommons.org/share-your-work/
https://creativecommons.org/about/cclicenses/
https://creativecommons.org/about/cclicenses/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/website-icons

@haesleinhuepf 30

Licensing: Creative Commons (CC)

Example

Figure adapted from https://www.openmicroscopy.org/ licensed by University of Dundee
& Open Microscopy Environment under Creative Commons Attribution 4.0 International

License

You must put such a

sentence and keep

the link to CC-BY

https://www.openmicroscopy.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

@haesleinhuepf 31

Licensing: Creative Commons (CC)

https://creativecommons.org/share-your-work/

https://creativecommons.org/about/cclicenses/

“Restrictive”

licensing

“Share alike”
Content on this slide was adapted from https://creativecommons.org/about/cclicenses/ which is licensed under a Creative Commons Attribution 4.0 International license. Icons by The Noun

Project.

https://creativecommons.org/share-your-work/
https://creativecommons.org/about/cclicenses/
https://creativecommons.org/about/cclicenses/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/website-icons

@haesleinhuepf 32

Licensing: Creative Commons (CC)

https://creativecommons.org/share-your-work/

https://creativecommons.org/about/cclicenses/

Content on this slide was adapted from https://creativecommons.org/about/cclicenses/ which is licensed under a Creative Commons Attribution 4.0 International license. Icons by The Noun
Project.

https://creativecommons.org/share-your-work/
https://creativecommons.org/about/cclicenses/
https://creativecommons.org/about/cclicenses/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/website-icons

@haesleinhuepf 33

Licensing: Creative Commons (CC)

https://creativecommons.org/share-your-work/

https://creativecommons.org/about/cclicenses/

“Restrictive”

licensing

Content on this slide was adapted from https://creativecommons.org/about/cclicenses/ which is licensed under a Creative Commons Attribution 4.0 International license. Icons by The Noun
Project.

https://creativecommons.org/share-your-work/
https://creativecommons.org/about/cclicenses/
https://creativecommons.org/about/cclicenses/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/website-icons

@haesleinhuepf 34

Licensing: Creative Commons (CC)

https://creativecommons.org/share-your-work/

https://creativecommons.org/about/cclicenses/

Content on this slide was adapted from https://creativecommons.org/about/cclicenses/ which is licensed under a Creative Commons Attribution 4.0 International license. Icons by The Noun
Project.

https://creativecommons.org/share-your-work/
https://creativecommons.org/about/cclicenses/
https://creativecommons.org/about/cclicenses/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/website-icons

@haesleinhuepf 35

Licensing software

In the software world, other licenses are more
popular, historically grown.

https://choosealicense.com/

BSD

Apache
GPL

MIT

LGPL

BSD

Berkley

Software

Distribution

GPL

GNU

General

Public

License

https://choosealicense.com/

@haesleinhuepf 36

Licensing Software: GPL

GPL

• Derivatives must also be GPL-
licensed

See also:

• Lesser General Public License
(LGPL)

—Integrate LGPL-licensed code
into not-LGPL-licensed code

https://www.gnu.org/licenses/gpl-3.0.en.html

https://en.wikipedia.org/wiki/GNU_General_Public_License#Copyleft

“Restrictive”

licensing

https://www.gnu.org/licenses/gpl-3.0.en.html
https://en.wikipedia.org/wiki/GNU_General_Public_License#Copyleft

@haesleinhuepf 37

Licensing Software: BSD0
Copyright (C) [year] by [copyright holder] <[email]>

Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO

EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL

DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF

OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE

https://en.wikipedia.org/wiki/BSD_licenses

Similar to CC0

(public domain)

https://en.wikipedia.org/wiki/BSD_licenses

@haesleinhuepf 38

Licensing Software: BSD0
Copyright (C) [year] by [copyright holder] <[email]>

Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO

EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL

DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF

OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE

https://en.wikipedia.org/wiki/BSD_licenses

Disclaimer

Whatever you do with it,

we [the authors] are not

liable Relevant for [image]

data analysis script-

authors!

https://en.wikipedia.org/wiki/BSD_licenses

@haesleinhuepf 39

Licensing Software: BSD2
Copyright (c) <year>, <copyright holder>

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the

following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following

disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

https://en.wikipedia.org/wiki/BSD_licenses

Similar to CC-BY

https://en.wikipedia.org/wiki/BSD_licenses

@haesleinhuepf 40

Licensing Software: BSD3
Copyright <year> <copyright holder>

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the

following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following

disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote

products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

https://en.wikipedia.org/wiki/BSD_licenses

Similar to CC-BY

You must not use the

copyright holder’s

name to endorse your

derivative of the work.

That’s also part of all

CC-BY licenses

https://en.wikipedia.org/wiki/BSD_licenses

@haesleinhuepf 42

How/when to decide for a license
How?

• Choose a license compatible with
your ecosystem

When?

• When the project starts

• As early as possible

• Changing the license later may be
hard.

• Beware: Your employer might be the
copyright holder. They have the final
word on how to license, publish and
make accessible your work!

https://imagej.net/licensing/

https://imagej.net/licensing/

@haesleinhuepf 43

Permissive versus restrictive

Use a license which

is compatible to other projects you’re collaborating with and

fits to your needs / role.

BSD3 / CC-BY

licensed project

GPL / CC-BY-SA

licensed project

If you want your stuff to be

used, use BSD / CC-BY

If you want to make use of

many other things, use

GPL / CC-BY-SA

@haesleinhuepf 44

Quiz

May I use one of the
Figures from this
preprint?

May I download and
redistribute this
preprint to students
of a course for free?

No Yes

No Yes

@haesleinhuepf 45

Quiz

May I reuse code from this
repository in my own BSD-
licensed work?

No Yes

@haesleinhuepf 46

Quiz

May I reuse code from this
repository in my own GPL-
licensed work?

No Yes

@haesleinhuepf 47

Take home message

If you share material (openly or not)

license it _

and it’ll be harder to steal it

This material is licensed by Robert Haase, PoL Dresden under the

CC-BY 4.0 license https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

@haesleinhuepf

Python Algorithms:
Conditions, loops, functions

and custom libraries
Robert Haase

April 2023

This material is licensed by Robert Haase, PoL Dresden under the

CC-BY 4.0 license https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

@haesleinhuepf

Conditions

Data science workflows rarely look like this

9

@haesleinhuepf

Conditions

Data science workflows rather look like this

1 8

5 9??

Yes

No

Yes

No

?

Yes

No

Conditional statement

@haesleinhuepf

Conditions

Conditional statements can be used to

— Check if pre-requisites are met

— Check if data has the right format

— Check if processing results are within an expected range

— Check for errors Analyse

image

?

Exit

Load

data

Yes

No

Is data

an

image?

Yes

No

@haesleinhuepf

If-statement

Depending on a condition, some lines of code are executed or not.

do something

if condition :

do something if

condition is true

// do a final thing

@haesleinhuepf

do something

if condition :

do something if

condition is true

// do a final thing

If-statement

Depending on a condition, some lines of code are executed or not.

@haesleinhuepf

If-statement

The if / elif / else statement allows to program alternatives.

Depending on conditions, only one block is computed

Indentation is used to mark where a block starts and ends.

Indentation helps reading blocks,

if condition :

do something if

condition is true

else :

do something else if

condition is false

do in any case

if a == 0 :

do something if a = 0

elif a == 1 :

do something if a = 1

else :

do if a neither 0 nor 1

do in any case

@haesleinhuepf

If-statement

Comparison operators always have True (1) or False (0) as results.

Operator Description Example

<, <= smaller than, smaller or equal to a < b

>, >= greater than, greater or equal to a > b

== equal to a == b

!= not equal to a != 1

initialise program

quality = 99.5

evaluate result

if quality > 99.9 :

print("Everything is fine.")

else :

print("We need to improve!")

Note: These are

two equal signs!

@haesleinhuepf

Combined conditions

Logic operators always take conditions as operands and result in a condition.

— and

— or

— not

Also combined conditions can be either True (1) or False (0).

initialise program

quality = 99.9

age = 3

if quality >= 99.9 and age > 5 :

print("The item is ok.")

initialise program

quality = 99.9

if not quality < 99.9 :

print("The item is ok.")

@haesleinhuepf

Conditions with arrays
Checking contents of lists can be done intuitively using the in statement

initialise program

my_list = [1, 5, 7, 8]

item = 3

if item in my_list :

print("The item is in the list.")

else :

print("There is no", item, "in", my_list)

initialise program

my_list = [1, 5, 7, 8]

item = 3

if item not in my_list :

print("There is no", item, "in", my_list)

else :

print("The item is in the list.")

@haesleinhuepf

Readable code

• Every command belongs on its own line

• Insert empty lines to separate important processing
steps

• Put spaces between operators and operands,
because:

This is easier to read thanthat,orisnt’it?

• Indent every conditional block (if/else) using the TAB
key

initialise program

a = 5;b = 3;c = 8

d = (a + b) / c

print("Yin" if a == 5 else "Yang")

initialise program

a = 5

b = 3

c = 8

initialise program

a = 5

b = 3

c = 8

execute algorithm

d=(a+b)/c

evaluate result

initialise program

a = 5

b = 3

c = 8

execute algorithm

d = (a + b) / c

evaluate result

if a == 5 :

print("Yin")

else :

print("Yang")

@haesleinhuepf

Loops

To repeat actions, you run code in loops

??

Yes

No

Yes

No

Loop

statement

?
Yes

No

@haesleinhuepf

Loops
The for statement allows us to execute some lines of code for several times,

typically for all items in an array-like thing (lists, tuples, images)

do something

for <variable> in <array> :

do something repeatedly

do something

@haesleinhuepf

For-loops

Example list : range(start, stop, step)

@haesleinhuepf

For-loops

•Indentation means combining
operations to a block

•Colon necessary

Don’t forget

to indent!

Don’t forget

the colon!

@haesleinhuepf

Generating arrays within for-loops

There is a long and a short way for creating arrays with numbers.

@haesleinhuepf

Generating arrays within for-loops

Also a combination with the if-statement is possible

@haesleinhuepf 65

Listing files in a folder

Common use-case: do something with all image files in a folder

@haesleinhuepf

While-loops

While loops keep executing indented code as long as a condition is met:

Works the same as

with the if

statement

@haesleinhuepf

Executing loops

Using the break statement, you can leave a loop

@haesleinhuepf

Skipping iterations

The continue statement allows to skip iterations

@haesleinhuepf

Functions
• In case repetitive tasks appear that cannot be handled in a loop, custom functions are the way to

go.

• Functions allow to re-use code in different contexts.

• Indentation is crucial.

• Functions must be defined before called

Definition:

Call:

body

return statement

(optional)

name (parameters)

@haesleinhuepf

Functions

In case repetitive tasks appear that cannot be handled in a loop, custom functions are the
way to go.

Functions allow to re-use code in different contexts.

Indentation is crucial.

Functions must be defined before called

Definition Call

@haesleinhuepf

Functions

Document your functions to keep track of what they do.

Describe what the functions does and what the parameters are meant to be

•You can then later print the documentation if you can’t recall how a function works.

@haesleinhuepf 72

Libraries

• The import statement allows to use functions provided by others.

• Commonly put at the beginning of a notebook or script to make sure everything is
installed.

After cle has

been imported…

… it can be used

@haesleinhuepf

Libraries

For re-using functions between notebooks / projects, use libraries. -> Sustainability

Simple python libraries are .py files containing multiple functions.

The import statement allows you to import python files from the same folder.

@haesleinhuepf 74

Outlook: The power of Python

With Python, you can automate many tedious tasks. Example: Downloading files from the
owncloud.

Build a login form

Log in

List all files in the owncloud Download a file

NEVER save your

password in Python

code!

Take care: You can also

DELETE all files in an owncloud

folder using similar code

@haesleinhuepf 75

Outlook: The power of AI
Feel free to use artificial intelligence during the exercises. Play with it, learn how to exploit it best.
Consider: It lies from time to time and during the exam it can’t help you.

https://chat.openai.com/chat

https://chat.openai.com/chat

@haesleinhuepf

Jeey, I can write code like

76

Software quality indicators

Interpretation of “High quality code” changes with experience

https://towardsdatascience.com/how-to-write-high-quality-python-as-a-data-scientist-

cde99f582675?gi=11843badbb14

https://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect

non_square_numbers = len(set(range(1, 1001))

.difference(set(map(lambda x: x ** 2, range(1, 1001)))))

Jeey, I can write code like

large_numbers = numbers[numbers > 100]

Experience

C
o

d
e
 c

o
m

p
le

x
it

y

I prefer writing code like

large_numbers = numbers[numbers > 100]

Good code lives

below this line

https://towardsdatascience.com/how-to-write-high-quality-python-as-a-data-scientist-cde99f582675?gi=11843badbb14
https://towardsdatascience.com/how-to-write-high-quality-python-as-a-data-scientist-cde99f582675?gi=11843badbb14
https://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect

@haesleinhuepf 77

Summary
Today you learned:

• Document what dependencies you use!

• Sharing / licensing terminology

• Levels of openness

• Copyright holder / Author / Publisher / Licensee

• FAIR principles (findable, accessible,
interoperable, reusable)

• Python algorithms

• Loops

• Conditions

• Functions

• Libraries

Coming up next:

• Image processing

• Image filtering

• Napari

@haesleinhuepf 78

Exercises
• Check the 02_python_algorithms folder online https://github.com/BiAPoL/Bio-image_Analysis_with_Python

1. Start up a terminal

2. Activate the environment using
conda activate my_first_env

4. Start up jupyter lab

3. Use the cd command to navigate to
the exercise folder

https://github.com/BiAPoL/Bio-image_Analysis_with_Python

	Slide 1
	Slide 2: Document what you use
	Slide 3: Document what you use
	Slide 4: Document what you use
	Slide 5: Software quality indicators
	Slide 6: Target audience
	Slide 7: Software quality indicators
	Slide 8: Bad example
	Slide 9: Software quality indicators
	Slide 10: Software quality indicators
	Slide 11: Software quality indicators
	Slide 12: Openness of software / projects
	Slide 13: Take home message
	Slide 14
	Slide 15: Use cases: Data
	Slide 16: Use cases: Manuscripts
	Slide 17: Use cases: Teaching material
	Slide 18: Use cases: Figures
	Slide 19: Use cases: Code
	Slide 20: Terminology
	Slide 21: FAIR principles
	Slide 22: FAIR principles: Findable
	Slide 23: Quiz: Digital object identifiers
	Slide 24: FAIR principles: Accessible
	Slide 25: FAIR principles: Interoperable
	Slide 26: FAIR principles: Reusable
	Slide 27: Licensing: Creative Commons (CC)
	Slide 28: Licensing: Creative Commons (CC)
	Slide 29: Licensing: Creative Commons (CC)
	Slide 30: Licensing: Creative Commons (CC)
	Slide 31: Licensing: Creative Commons (CC)
	Slide 32: Licensing: Creative Commons (CC)
	Slide 33: Licensing: Creative Commons (CC)
	Slide 34: Licensing: Creative Commons (CC)
	Slide 35: Licensing software
	Slide 36: Licensing Software: GPL
	Slide 37: Licensing Software: BSD0
	Slide 38: Licensing Software: BSD0
	Slide 39: Licensing Software: BSD2
	Slide 40: Licensing Software: BSD3
	Slide 42: How/when to decide for a license
	Slide 43: Permissive versus restrictive
	Slide 44: Quiz
	Slide 45: Quiz
	Slide 46: Quiz
	Slide 47: Take home message
	Slide 48
	Slide 49: Conditions
	Slide 50: Conditions
	Slide 51: Conditions
	Slide 52: If-statement
	Slide 53: If-statement
	Slide 54: If-statement
	Slide 55: If-statement
	Slide 56: Combined conditions
	Slide 57: Conditions with arrays
	Slide 58: Readable code
	Slide 59: Loops
	Slide 60: Loops
	Slide 61: For-loops
	Slide 62: For-loops
	Slide 63: Generating arrays within for-loops
	Slide 64: Generating arrays within for-loops
	Slide 65: Listing files in a folder
	Slide 66: While-loops
	Slide 67: Executing loops
	Slide 68: Skipping iterations
	Slide 69: Functions
	Slide 70: Functions
	Slide 71: Functions
	Slide 72: Libraries
	Slide 73: Libraries
	Slide 74: Outlook: The power of Python
	Slide 75: Outlook: The power of AI
	Slide 76: Software quality indicators
	Slide 77: Summary
	Slide 78: Exercises

